鲁棒稀疏度恢复下的目标成像

Hongqing Liu, Yong Li, Jianzhong Huang, Yi Zhou
{"title":"鲁棒稀疏度恢复下的目标成像","authors":"Hongqing Liu, Yong Li, Jianzhong Huang, Yi Zhou","doi":"10.1109/TENCON.2013.6718898","DOIUrl":null,"url":null,"abstract":"Creating a dictionary is essential in utilizing compressed sensing concept to explore sparsity for many applications. On one hand, a large and fine dictionary is needed to achieve high estimation accuracy. On the other hand, big dictionary also introduce heavy computations. Furthermore, one can imagine that no matter how fine we grid the domain to create the dictionary, there always will be off-grid problem, namely, the parameters we try to estimate do not lie on the grids. In this work, we model this off-grid problem as a basis mismatch. To tackle this issue, we propose to utilize the robust optimization techniques such as stochastic robust and worst case optimization. Simulations in imaging applications confirm that proposed robust compressed sensing approaches indeed outperform the traditional one.","PeriodicalId":425023,"journal":{"name":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Target imaging under robust sparsity recovery\",\"authors\":\"Hongqing Liu, Yong Li, Jianzhong Huang, Yi Zhou\",\"doi\":\"10.1109/TENCON.2013.6718898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creating a dictionary is essential in utilizing compressed sensing concept to explore sparsity for many applications. On one hand, a large and fine dictionary is needed to achieve high estimation accuracy. On the other hand, big dictionary also introduce heavy computations. Furthermore, one can imagine that no matter how fine we grid the domain to create the dictionary, there always will be off-grid problem, namely, the parameters we try to estimate do not lie on the grids. In this work, we model this off-grid problem as a basis mismatch. To tackle this issue, we propose to utilize the robust optimization techniques such as stochastic robust and worst case optimization. Simulations in imaging applications confirm that proposed robust compressed sensing approaches indeed outperform the traditional one.\",\"PeriodicalId\":425023,\"journal\":{\"name\":\"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2013.6718898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2013.6718898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在利用压缩感知概念探索许多应用程序的稀疏性时,创建字典是必不可少的。一方面,为了达到较高的估计精度,需要一个庞大而精细的字典。另一方面,大字典也带来了繁重的计算。此外,可以想象,无论我们如何精细地划分域来创建字典,总是会存在离网问题,即我们试图估计的参数不在网格上。在这项工作中,我们将这种离网问题建模为基错配。为了解决这一问题,我们建议利用随机鲁棒优化和最坏情况优化等鲁棒优化技术。在成像应用中的仿真证实了所提出的鲁棒压缩感知方法确实优于传统的压缩感知方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target imaging under robust sparsity recovery
Creating a dictionary is essential in utilizing compressed sensing concept to explore sparsity for many applications. On one hand, a large and fine dictionary is needed to achieve high estimation accuracy. On the other hand, big dictionary also introduce heavy computations. Furthermore, one can imagine that no matter how fine we grid the domain to create the dictionary, there always will be off-grid problem, namely, the parameters we try to estimate do not lie on the grids. In this work, we model this off-grid problem as a basis mismatch. To tackle this issue, we propose to utilize the robust optimization techniques such as stochastic robust and worst case optimization. Simulations in imaging applications confirm that proposed robust compressed sensing approaches indeed outperform the traditional one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信