{"title":"关于实值函数{φnp: p= 1,2,…}完备性的一个注记","authors":"Sin-Ei Takahasi, M. Takeuchi","doi":"10.5036/BFSIU1968.13.25","DOIUrl":null,"url":null,"abstract":"imply that f(t)=0, a.e. on [α,β] (cf. [1]). Here μ denotes the Lebesgue measure on R. Throughout the remainder {np:p=1,2,...} will denote a sequence of positive numbers with limp→ ∞np=+∞ and φ will denote a real-valued function on R such that φ(αφ)≧0 and φ is strictly increasing on some interval [αφ,αφ+δ φ], where αφ is a real number and δφ is a positive number. In [3], the first author has showen that if φ is an absolutely continuous function on [αφ,αφ+δ φ] with φ'(t)≠0, a.e. on [αφ,αφ+δ φ], and if Σ ∞p=11/np=+∞, then {φnp:p=1,2,...} is complete on [αφ,αφ+δ φ] (see [3, Theorem 1 part (i)]). The following theorem shows that the above result holds under a strictly weaker condition on φ.","PeriodicalId":141145,"journal":{"name":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Note on Completeness of Real-Valued Functions {φnp: p=1, 2, …}\",\"authors\":\"Sin-Ei Takahasi, M. Takeuchi\",\"doi\":\"10.5036/BFSIU1968.13.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"imply that f(t)=0, a.e. on [α,β] (cf. [1]). Here μ denotes the Lebesgue measure on R. Throughout the remainder {np:p=1,2,...} will denote a sequence of positive numbers with limp→ ∞np=+∞ and φ will denote a real-valued function on R such that φ(αφ)≧0 and φ is strictly increasing on some interval [αφ,αφ+δ φ], where αφ is a real number and δφ is a positive number. In [3], the first author has showen that if φ is an absolutely continuous function on [αφ,αφ+δ φ] with φ'(t)≠0, a.e. on [αφ,αφ+δ φ], and if Σ ∞p=11/np=+∞, then {φnp:p=1,2,...} is complete on [αφ,αφ+δ φ] (see [3, Theorem 1 part (i)]). The following theorem shows that the above result holds under a strictly weaker condition on φ.\",\"PeriodicalId\":141145,\"journal\":{\"name\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/BFSIU1968.13.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/BFSIU1968.13.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
假设f(t)=0, a.e. on [α,β] (cf.[1])。其中μ表示r上的Lebesgue测度。整个余项{np:p=1,2,…}表示一个线性→∞np=+∞的正数序列,φ表示R上的一个实值函数,使得φ(αφ)≧0且φ在某区间[αφ,αφ+δ φ]上严格递增,其中αφ为实数,δφ为正数。在[3]中,第一作者证明了如果φ在[αφ,αφ+δ φ]上是一个绝对连续函数,且φ'(t)≠0,a.e.在[αφ,αφ+δ φ]上,且Σ∞p=11/np=+∞,则{φnp:p=1,2,…}是完整的(αφ,αφ+δφ)(见[3,定理1部分(i)])。下面的定理证明了上述结果在φ上的一个严格弱条件下成立。
A Note on Completeness of Real-Valued Functions {φnp: p=1, 2, …}
imply that f(t)=0, a.e. on [α,β] (cf. [1]). Here μ denotes the Lebesgue measure on R. Throughout the remainder {np:p=1,2,...} will denote a sequence of positive numbers with limp→ ∞np=+∞ and φ will denote a real-valued function on R such that φ(αφ)≧0 and φ is strictly increasing on some interval [αφ,αφ+δ φ], where αφ is a real number and δφ is a positive number. In [3], the first author has showen that if φ is an absolutely continuous function on [αφ,αφ+δ φ] with φ'(t)≠0, a.e. on [αφ,αφ+δ φ], and if Σ ∞p=11/np=+∞, then {φnp:p=1,2,...} is complete on [αφ,αφ+δ φ] (see [3, Theorem 1 part (i)]). The following theorem shows that the above result holds under a strictly weaker condition on φ.