关于实值函数{φnp: p= 1,2,…}完备性的一个注记

Sin-Ei Takahasi, M. Takeuchi
{"title":"关于实值函数{φnp: p= 1,2,…}完备性的一个注记","authors":"Sin-Ei Takahasi, M. Takeuchi","doi":"10.5036/BFSIU1968.13.25","DOIUrl":null,"url":null,"abstract":"imply that f(t)=0, a.e. on [α,β] (cf. [1]). Here μ denotes the Lebesgue measure on R. Throughout the remainder {np:p=1,2,...} will denote a sequence of positive numbers with limp→ ∞np=+∞ and φ will denote a real-valued function on R such that φ(αφ)≧0 and φ is strictly increasing on some interval [αφ,αφ+δ φ], where αφ is a real number and δφ is a positive number. In [3], the first author has showen that if φ is an absolutely continuous function on [αφ,αφ+δ φ] with φ'(t)≠0, a.e. on [αφ,αφ+δ φ], and if Σ ∞p=11/np=+∞, then {φnp:p=1,2,...} is complete on [αφ,αφ+δ φ] (see [3, Theorem 1 part (i)]). The following theorem shows that the above result holds under a strictly weaker condition on φ.","PeriodicalId":141145,"journal":{"name":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Note on Completeness of Real-Valued Functions {φnp: p=1, 2, …}\",\"authors\":\"Sin-Ei Takahasi, M. Takeuchi\",\"doi\":\"10.5036/BFSIU1968.13.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"imply that f(t)=0, a.e. on [α,β] (cf. [1]). Here μ denotes the Lebesgue measure on R. Throughout the remainder {np:p=1,2,...} will denote a sequence of positive numbers with limp→ ∞np=+∞ and φ will denote a real-valued function on R such that φ(αφ)≧0 and φ is strictly increasing on some interval [αφ,αφ+δ φ], where αφ is a real number and δφ is a positive number. In [3], the first author has showen that if φ is an absolutely continuous function on [αφ,αφ+δ φ] with φ'(t)≠0, a.e. on [αφ,αφ+δ φ], and if Σ ∞p=11/np=+∞, then {φnp:p=1,2,...} is complete on [αφ,αφ+δ φ] (see [3, Theorem 1 part (i)]). The following theorem shows that the above result holds under a strictly weaker condition on φ.\",\"PeriodicalId\":141145,\"journal\":{\"name\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/BFSIU1968.13.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/BFSIU1968.13.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

假设f(t)=0, a.e. on [α,β] (cf.[1])。其中μ表示r上的Lebesgue测度。整个余项{np:p=1,2,…}表示一个线性→∞np=+∞的正数序列,φ表示R上的一个实值函数,使得φ(αφ)≧0且φ在某区间[αφ,αφ+δ φ]上严格递增,其中αφ为实数,δφ为正数。在[3]中,第一作者证明了如果φ在[αφ,αφ+δ φ]上是一个绝对连续函数,且φ'(t)≠0,a.e.在[αφ,αφ+δ φ]上,且Σ∞p=11/np=+∞,则{φnp:p=1,2,…}是完整的(αφ,αφ+δφ)(见[3,定理1部分(i)])。下面的定理证明了上述结果在φ上的一个严格弱条件下成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Completeness of Real-Valued Functions {φnp: p=1, 2, …}
imply that f(t)=0, a.e. on [α,β] (cf. [1]). Here μ denotes the Lebesgue measure on R. Throughout the remainder {np:p=1,2,...} will denote a sequence of positive numbers with limp→ ∞np=+∞ and φ will denote a real-valued function on R such that φ(αφ)≧0 and φ is strictly increasing on some interval [αφ,αφ+δ φ], where αφ is a real number and δφ is a positive number. In [3], the first author has showen that if φ is an absolutely continuous function on [αφ,αφ+δ φ] with φ'(t)≠0, a.e. on [αφ,αφ+δ φ], and if Σ ∞p=11/np=+∞, then {φnp:p=1,2,...} is complete on [αφ,αφ+δ φ] (see [3, Theorem 1 part (i)]). The following theorem shows that the above result holds under a strictly weaker condition on φ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信