代数数据类型的抽象解释

T. Jensen
{"title":"代数数据类型的抽象解释","authors":"T. Jensen","doi":"10.1109/ICCL.1994.288374","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the static analysis of programs over recursive data structures such as lists and trees. In particular, we consider the analysis of uniform properties i.e., properties pertaining only to the content of a data structure. We first present an axiomatic description of properties of sum types and algebraic types and use the theory of powerdomains to construct lattices modelling the logic of the axiomatisations. In addition to a new analysis of sum types based on logic, this provides a systematic way of defining abstract lattices for arbitrary algebraic data types. We provide a detailed description of the lattice for analysing lists and show how our developments generalise existing frameworks proposed by Wadler (1987) and Nielson and Nielson (1992). Finally, we show how abstract interpretations of well known list operations can be defined over these lattices.<<ETX>>","PeriodicalId":137441,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Computer Languages (ICCL'94)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Abstract interpretation over algebraic data types\",\"authors\":\"T. Jensen\",\"doi\":\"10.1109/ICCL.1994.288374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the static analysis of programs over recursive data structures such as lists and trees. In particular, we consider the analysis of uniform properties i.e., properties pertaining only to the content of a data structure. We first present an axiomatic description of properties of sum types and algebraic types and use the theory of powerdomains to construct lattices modelling the logic of the axiomatisations. In addition to a new analysis of sum types based on logic, this provides a systematic way of defining abstract lattices for arbitrary algebraic data types. We provide a detailed description of the lattice for analysing lists and show how our developments generalise existing frameworks proposed by Wadler (1987) and Nielson and Nielson (1992). Finally, we show how abstract interpretations of well known list operations can be defined over these lattices.<<ETX>>\",\"PeriodicalId\":137441,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Computer Languages (ICCL'94)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Computer Languages (ICCL'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCL.1994.288374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Computer Languages (ICCL'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCL.1994.288374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文关注递归数据结构(如列表和树)上程序的静态分析。特别地,我们考虑统一属性的分析,即只属于数据结构内容的属性。我们首先给出了和型和代数型性质的公理化描述,并利用幂域理论构造了模拟公理化逻辑的格。除了基于逻辑的和类型的新分析之外,它还提供了为任意代数数据类型定义抽象格的系统方法。我们提供了用于分析列表的格的详细描述,并展示了我们的发展如何概括由Wadler(1987)和Nielson和Nielson(1992)提出的现有框架。最后,我们展示了如何在这些格上定义已知列表操作的抽象解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstract interpretation over algebraic data types
This paper is concerned with the static analysis of programs over recursive data structures such as lists and trees. In particular, we consider the analysis of uniform properties i.e., properties pertaining only to the content of a data structure. We first present an axiomatic description of properties of sum types and algebraic types and use the theory of powerdomains to construct lattices modelling the logic of the axiomatisations. In addition to a new analysis of sum types based on logic, this provides a systematic way of defining abstract lattices for arbitrary algebraic data types. We provide a detailed description of the lattice for analysing lists and show how our developments generalise existing frameworks proposed by Wadler (1987) and Nielson and Nielson (1992). Finally, we show how abstract interpretations of well known list operations can be defined over these lattices.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信