带常数的词方程在PSPACE中是可满足的

Wojciech Plandowski
{"title":"带常数的词方程在PSPACE中是可满足的","authors":"Wojciech Plandowski","doi":"10.1109/SFFCS.1999.814622","DOIUrl":null,"url":null,"abstract":"We prove that the satisfiability problem for word equations is in PSPACE. The satisfiability problem for word equations has a simple formulation: find out whether or not an input word equation has a solution. The decidability of the problem was proved by G.S. Makanin (1977). His decision procedure is one of the most complicated algorithms existing in the literature. We propose an alternative algorithm. The full version of the algorithm requires only a proof of the upper bound for index of periodicity of a minimal solution (A. Koscielski and L. Pacholski, see Journal of ACM, vol.43, no.4. p.670-84). Our algorithm is the first one which is proved to work in polynomial space.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"212","resultStr":"{\"title\":\"Satisfiability of word equations with constants is in PSPACE\",\"authors\":\"Wojciech Plandowski\",\"doi\":\"10.1109/SFFCS.1999.814622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the satisfiability problem for word equations is in PSPACE. The satisfiability problem for word equations has a simple formulation: find out whether or not an input word equation has a solution. The decidability of the problem was proved by G.S. Makanin (1977). His decision procedure is one of the most complicated algorithms existing in the literature. We propose an alternative algorithm. The full version of the algorithm requires only a proof of the upper bound for index of periodicity of a minimal solution (A. Koscielski and L. Pacholski, see Journal of ACM, vol.43, no.4. p.670-84). Our algorithm is the first one which is proved to work in polynomial space.\",\"PeriodicalId\":385047,\"journal\":{\"name\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"212\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFFCS.1999.814622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 212

摘要

证明了字方程在PSPACE中的可满足性问题。词方程的可满足性问题有一个简单的表述:找出输入的词方程是否有解。G.S. Makanin(1977)证明了问题的可决性。他的决策过程是目前文献中最复杂的算法之一。我们提出了一种替代算法。完整版的算法只需要证明最小解的周期指标的上界(a . Koscielski和L. Pacholski,见Journal of ACM, vol.43, no.4)。p.670 - 84)。我们的算法是第一个被证明在多项式空间中有效的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Satisfiability of word equations with constants is in PSPACE
We prove that the satisfiability problem for word equations is in PSPACE. The satisfiability problem for word equations has a simple formulation: find out whether or not an input word equation has a solution. The decidability of the problem was proved by G.S. Makanin (1977). His decision procedure is one of the most complicated algorithms existing in the literature. We propose an alternative algorithm. The full version of the algorithm requires only a proof of the upper bound for index of periodicity of a minimal solution (A. Koscielski and L. Pacholski, see Journal of ACM, vol.43, no.4. p.670-84). Our algorithm is the first one which is proved to work in polynomial space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信