最小化闪存读延迟以保持随机森林树间局部性的研究

Yu-Cheng Lin, Yu-Pei Liang, Tseng-Yi Chen, Yuan-Hao Chang, Shuo-Han Chen, W. Shih
{"title":"最小化闪存读延迟以保持随机森林树间局部性的研究","authors":"Yu-Cheng Lin, Yu-Pei Liang, Tseng-Yi Chen, Yuan-Hao Chang, Shuo-Han Chen, W. Shih","doi":"10.1145/3508352.3549365","DOIUrl":null,"url":null,"abstract":"Many prior research works have been widely discussed how to bring machine learning algorithms to embedded systems. Because of resource constraints, embedded platforms for machine learning applications play the role of a predictor. That is, an inference model will be constructed on a personal computer or a server platform, and then integrated into embedded systems for just-in-time inference. With the consideration of the limited main memory space in embedded systems, an important problem for embedded machine learning systems is how to efficiently move inference model between the main memory and a secondary storage (e.g., flash memory). For tackling this problem, we need to consider how to preserve the locality inside the inference model during model construction. Therefore, we have proposed a solution, namely locality-aware random forest (LaRF), to preserve the inter-locality of all decision trees within a random forest model during the model construction process. Owing to the locality preservation, LaRF can improve the read latency by 81.5% at least, compared to the original random forest library.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Minimizing the Read Latency of Flash Memory to Preserve Inter-tree Locality in Random Forest\",\"authors\":\"Yu-Cheng Lin, Yu-Pei Liang, Tseng-Yi Chen, Yuan-Hao Chang, Shuo-Han Chen, W. Shih\",\"doi\":\"10.1145/3508352.3549365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many prior research works have been widely discussed how to bring machine learning algorithms to embedded systems. Because of resource constraints, embedded platforms for machine learning applications play the role of a predictor. That is, an inference model will be constructed on a personal computer or a server platform, and then integrated into embedded systems for just-in-time inference. With the consideration of the limited main memory space in embedded systems, an important problem for embedded machine learning systems is how to efficiently move inference model between the main memory and a secondary storage (e.g., flash memory). For tackling this problem, we need to consider how to preserve the locality inside the inference model during model construction. Therefore, we have proposed a solution, namely locality-aware random forest (LaRF), to preserve the inter-locality of all decision trees within a random forest model during the model construction process. Owing to the locality preservation, LaRF can improve the read latency by 81.5% at least, compared to the original random forest library.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多先前的研究工作已经广泛讨论了如何将机器学习算法引入嵌入式系统。由于资源限制,机器学习应用的嵌入式平台扮演着预测器的角色。即在个人计算机或服务器平台上构建推理模型,然后集成到嵌入式系统中进行实时推理。考虑到嵌入式系统中主存空间有限,嵌入式机器学习系统的一个重要问题是如何有效地在主存和辅助存储器(如闪存)之间移动推理模型。为了解决这个问题,我们需要考虑如何在模型构建过程中保持推理模型内部的局部性。因此,我们提出了一种解决方案,即位置感知随机森林(LaRF),以在模型构建过程中保持随机森林模型中所有决策树的局域性。与原始随机森林库相比,LaRF库的读延迟至少提高了81.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Minimizing the Read Latency of Flash Memory to Preserve Inter-tree Locality in Random Forest
Many prior research works have been widely discussed how to bring machine learning algorithms to embedded systems. Because of resource constraints, embedded platforms for machine learning applications play the role of a predictor. That is, an inference model will be constructed on a personal computer or a server platform, and then integrated into embedded systems for just-in-time inference. With the consideration of the limited main memory space in embedded systems, an important problem for embedded machine learning systems is how to efficiently move inference model between the main memory and a secondary storage (e.g., flash memory). For tackling this problem, we need to consider how to preserve the locality inside the inference model during model construction. Therefore, we have proposed a solution, namely locality-aware random forest (LaRF), to preserve the inter-locality of all decision trees within a random forest model during the model construction process. Owing to the locality preservation, LaRF can improve the read latency by 81.5% at least, compared to the original random forest library.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信