Xingyu Zhang, A. Hosseini, Jingdong Luo, A. Jen, Ray T. Chen
{"title":"基于硅集成纳米光子学和有机聚合物的小型化低功耗电光调制器","authors":"Xingyu Zhang, A. Hosseini, Jingdong Luo, A. Jen, Ray T. Chen","doi":"10.1117/12.2061189","DOIUrl":null,"url":null,"abstract":"We design and demonstrate a compact, low-power, low-dispersion and broadband optical modulator based on electro-optic (EO) polymer refilled silicon slot photonic crystal waveguide (PCW). The EO polymer is engineered for large EO activity and near-infrared transparency. The half-wave switching-voltage is measured to be Vπ=0.97±0.02V over optical spectrum range of 8nm, corresponding to a record-high effective in-device r33 of 1190pm/V and Vπ×L of 0.291±0.006V×mm in a push-pull configuration. Excluding the slow-light effect, we estimate the EO polymer is poled with an ultra-high efficiency of 89pm/V in the slot. In addition, to achieve high-speed modulation, silicon PCW is selectively doped to reduce RC time delay. The 3-dB RF bandwidth of the modulator is measured to be 11GHz, and a modulation response up to 40GHz is observed.","PeriodicalId":358951,"journal":{"name":"Optics & Photonics - Photonic Devices + Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Miniaturized low-power electro-optic modulator based on silicon integrated nanophotonics and organic polymers\",\"authors\":\"Xingyu Zhang, A. Hosseini, Jingdong Luo, A. Jen, Ray T. Chen\",\"doi\":\"10.1117/12.2061189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design and demonstrate a compact, low-power, low-dispersion and broadband optical modulator based on electro-optic (EO) polymer refilled silicon slot photonic crystal waveguide (PCW). The EO polymer is engineered for large EO activity and near-infrared transparency. The half-wave switching-voltage is measured to be Vπ=0.97±0.02V over optical spectrum range of 8nm, corresponding to a record-high effective in-device r33 of 1190pm/V and Vπ×L of 0.291±0.006V×mm in a push-pull configuration. Excluding the slow-light effect, we estimate the EO polymer is poled with an ultra-high efficiency of 89pm/V in the slot. In addition, to achieve high-speed modulation, silicon PCW is selectively doped to reduce RC time delay. The 3-dB RF bandwidth of the modulator is measured to be 11GHz, and a modulation response up to 40GHz is observed.\",\"PeriodicalId\":358951,\"journal\":{\"name\":\"Optics & Photonics - Photonic Devices + Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics & Photonics - Photonic Devices + Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2061189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Photonics - Photonic Devices + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2061189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Miniaturized low-power electro-optic modulator based on silicon integrated nanophotonics and organic polymers
We design and demonstrate a compact, low-power, low-dispersion and broadband optical modulator based on electro-optic (EO) polymer refilled silicon slot photonic crystal waveguide (PCW). The EO polymer is engineered for large EO activity and near-infrared transparency. The half-wave switching-voltage is measured to be Vπ=0.97±0.02V over optical spectrum range of 8nm, corresponding to a record-high effective in-device r33 of 1190pm/V and Vπ×L of 0.291±0.006V×mm in a push-pull configuration. Excluding the slow-light effect, we estimate the EO polymer is poled with an ultra-high efficiency of 89pm/V in the slot. In addition, to achieve high-speed modulation, silicon PCW is selectively doped to reduce RC time delay. The 3-dB RF bandwidth of the modulator is measured to be 11GHz, and a modulation response up to 40GHz is observed.