代码分解:理论与应用

N. Kashyap
{"title":"代码分解:理论与应用","authors":"N. Kashyap","doi":"10.1109/ISIT.2007.4557271","DOIUrl":null,"url":null,"abstract":"In this paper, we give an overview of Seymour's matroid decomposition theory in the context of binary linear codes, and discuss some of its implications for linear programming (LP) decoding of a binary linear code. As shown by Feldman et al. maximum-likelihood (ML) decoding over a discrete memoryless channel can be formulated as an LP problem. Using this formulation, we translate matroid-theoretic results of Grotschel and Truemper from the combinatorial optimization literature as examples of non-trivial families of codes for which ML decoding can be implemented in time polynomial in the length of the code. However, we also show that such families of codes are not good in a coding-theoretic sense - either their dimension or their minimum distance must grow sub-linearly with codelength.","PeriodicalId":193467,"journal":{"name":"2007 IEEE International Symposium on Information Theory","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Code Decomposition: Theory and Applications\",\"authors\":\"N. Kashyap\",\"doi\":\"10.1109/ISIT.2007.4557271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give an overview of Seymour's matroid decomposition theory in the context of binary linear codes, and discuss some of its implications for linear programming (LP) decoding of a binary linear code. As shown by Feldman et al. maximum-likelihood (ML) decoding over a discrete memoryless channel can be formulated as an LP problem. Using this formulation, we translate matroid-theoretic results of Grotschel and Truemper from the combinatorial optimization literature as examples of non-trivial families of codes for which ML decoding can be implemented in time polynomial in the length of the code. However, we also show that such families of codes are not good in a coding-theoretic sense - either their dimension or their minimum distance must grow sub-linearly with codelength.\",\"PeriodicalId\":193467,\"journal\":{\"name\":\"2007 IEEE International Symposium on Information Theory\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2007.4557271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2007.4557271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文概述了Seymour在二进制线性码中的矩阵分解理论,并讨论了它对二进制线性码的线性规划译码的一些启示。如Feldman等人所示,离散无存储器信道上的最大似然(ML)解码可以表述为LP问题。使用这个公式,我们将Grotschel和Truemper从组合优化文献中得到的矩阵理论结果转化为非平凡代码族的例子,其中ML解码可以在代码长度的时间多项式中实现。然而,我们也证明了这样的码族在编码理论意义上不是很好-它们的维数或最小距离必须随码长的亚线性增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Code Decomposition: Theory and Applications
In this paper, we give an overview of Seymour's matroid decomposition theory in the context of binary linear codes, and discuss some of its implications for linear programming (LP) decoding of a binary linear code. As shown by Feldman et al. maximum-likelihood (ML) decoding over a discrete memoryless channel can be formulated as an LP problem. Using this formulation, we translate matroid-theoretic results of Grotschel and Truemper from the combinatorial optimization literature as examples of non-trivial families of codes for which ML decoding can be implemented in time polynomial in the length of the code. However, we also show that such families of codes are not good in a coding-theoretic sense - either their dimension or their minimum distance must grow sub-linearly with codelength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信