常微分方程数值解的倒诺德塞克方法

V. Bucharskyi
{"title":"常微分方程数值解的倒诺德塞克方法","authors":"V. Bucharskyi","doi":"10.36074/20.11.2020.v5.25","DOIUrl":null,"url":null,"abstract":"where: z = (u, τu, τu, ... , τu ) – Nordsieck’s vector, τ – integration step, М – the number of terms in the Taylor series expansion of the function u(t), D, L – upper triangular and diagonal matrices whose element’s values di,j = { 1 (i−j)! , i ≥ j 0, i < j , li,i = τM−i+1 (M−i+1)! follow from the series expansion, q – a vector of free parameters that determines the properties of the numerical method,","PeriodicalId":235647,"journal":{"name":"MODALITĂȚI CONCEPTUALE DE DEZVOLTARE A ȘTIINȚEI MODERNE- VOLUMEN 5","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BACKWARD NORDSIECK’S METHODS FOR NUMERICAL SOLVING OF ORDINARY DIFFERENTIAL EQUATIONS\",\"authors\":\"V. Bucharskyi\",\"doi\":\"10.36074/20.11.2020.v5.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"where: z = (u, τu, τu, ... , τu ) – Nordsieck’s vector, τ – integration step, М – the number of terms in the Taylor series expansion of the function u(t), D, L – upper triangular and diagonal matrices whose element’s values di,j = { 1 (i−j)! , i ≥ j 0, i < j , li,i = τM−i+1 (M−i+1)! follow from the series expansion, q – a vector of free parameters that determines the properties of the numerical method,\",\"PeriodicalId\":235647,\"journal\":{\"name\":\"MODALITĂȚI CONCEPTUALE DE DEZVOLTARE A ȘTIINȚEI MODERNE- VOLUMEN 5\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MODALITĂȚI CONCEPTUALE DE DEZVOLTARE A ȘTIINȚEI MODERNE- VOLUMEN 5\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36074/20.11.2020.v5.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MODALITĂȚI CONCEPTUALE DE DEZVOLTARE A ȘTIINȚEI MODERNE- VOLUMEN 5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36074/20.11.2020.v5.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

式中:z = (u, τu, τu,…τu) - Nordsieck向量,τ -积分步长,М -函数u(t), D, L的泰勒级数展开式中的项数-元素值di,j = {1 (i - j)!,i≥j 0, i < j, li,i = τM - i+1 (M - i+1)!由级数展开可知,q是决定数值方法性质的自由参数向量,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BACKWARD NORDSIECK’S METHODS FOR NUMERICAL SOLVING OF ORDINARY DIFFERENTIAL EQUATIONS
where: z = (u, τu, τu, ... , τu ) – Nordsieck’s vector, τ – integration step, М – the number of terms in the Taylor series expansion of the function u(t), D, L – upper triangular and diagonal matrices whose element’s values di,j = { 1 (i−j)! , i ≥ j 0, i < j , li,i = τM−i+1 (M−i+1)! follow from the series expansion, q – a vector of free parameters that determines the properties of the numerical method,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信