高精度移动站位置估计的先验选择

Rafael Saraiva Campos, LISANDRO LOVISOLO
{"title":"高精度移动站位置估计的先验选择","authors":"Rafael Saraiva Campos, LISANDRO LOVISOLO","doi":"10.1109/ITS.2014.6947960","DOIUrl":null,"url":null,"abstract":"A priori identification and selection of high accuracy position estimates, i.e., with error below 100 meters, is particularly relevant for critical location-based applications, like vehicle tracking and, specially, emergency call positioning. This work presents a backpropagation artificial neural network classifier used to predict the accuracy of mobile station position estimates produced by a network-based radio-frequency fingerprinting method, RF-FING+RTD-PRED (Predicted Radio-frequency Fingerprint with Round Trip Delay), previously formulated by the authors. The classifier employs the same radio-frequency parameters used by the aforementioned method plus some additional network data. In field tests carried out in GSM (Global System for Mobile Communications) networks in urban and suburban areas, where 6600 measurement reports have been collected, a 89% precision in the identification of high accuracy position estimates has been achieved. The presented method is promptly extensible to 3G cellular networks.","PeriodicalId":359348,"journal":{"name":"2014 International Telecommunications Symposium (ITS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A priori selection of high accuracy mobile station position estimates\",\"authors\":\"Rafael Saraiva Campos, LISANDRO LOVISOLO\",\"doi\":\"10.1109/ITS.2014.6947960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A priori identification and selection of high accuracy position estimates, i.e., with error below 100 meters, is particularly relevant for critical location-based applications, like vehicle tracking and, specially, emergency call positioning. This work presents a backpropagation artificial neural network classifier used to predict the accuracy of mobile station position estimates produced by a network-based radio-frequency fingerprinting method, RF-FING+RTD-PRED (Predicted Radio-frequency Fingerprint with Round Trip Delay), previously formulated by the authors. The classifier employs the same radio-frequency parameters used by the aforementioned method plus some additional network data. In field tests carried out in GSM (Global System for Mobile Communications) networks in urban and suburban areas, where 6600 measurement reports have been collected, a 89% precision in the identification of high accuracy position estimates has been achieved. The presented method is promptly extensible to 3G cellular networks.\",\"PeriodicalId\":359348,\"journal\":{\"name\":\"2014 International Telecommunications Symposium (ITS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Telecommunications Symposium (ITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITS.2014.6947960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Telecommunications Symposium (ITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2014.6947960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先验地识别和选择高精度的位置估计,即误差低于100米的位置估计,对于关键的基于位置的应用,如车辆跟踪,特别是紧急呼叫定位,尤其重要。这项工作提出了一种反向传播人工神经网络分类器,用于预测由基于网络的射频指纹识别方法RF-FING+RTD-PRED(预测射频指纹与往返延迟)产生的移动站位置估计的准确性,该方法之前由作者制定。该分类器使用与上述方法相同的射频参数以及一些额外的网络数据。在城市和郊区的GSM(全球移动通信系统)网络中进行的现场测试中,收集了6600份测量报告,在识别高精度位置估计方面达到了89%的精度。所提出的方法可迅速扩展到3G蜂窝网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A priori selection of high accuracy mobile station position estimates
A priori identification and selection of high accuracy position estimates, i.e., with error below 100 meters, is particularly relevant for critical location-based applications, like vehicle tracking and, specially, emergency call positioning. This work presents a backpropagation artificial neural network classifier used to predict the accuracy of mobile station position estimates produced by a network-based radio-frequency fingerprinting method, RF-FING+RTD-PRED (Predicted Radio-frequency Fingerprint with Round Trip Delay), previously formulated by the authors. The classifier employs the same radio-frequency parameters used by the aforementioned method plus some additional network data. In field tests carried out in GSM (Global System for Mobile Communications) networks in urban and suburban areas, where 6600 measurement reports have been collected, a 89% precision in the identification of high accuracy position estimates has been achieved. The presented method is promptly extensible to 3G cellular networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信