{"title":"一种基于智能合约的分布式账本技术,使用深度学习技术来保护医学图像","authors":"Chandini A. G, P. I. Basarkod","doi":"10.1109/ICKECS56523.2022.10060828","DOIUrl":null,"url":null,"abstract":"Internet of Medical Things (IoMT) is on-demand research area, generally utilized in most of medical applications. Security is a challenging problem in decentralized platform while handling with medical data or images. An effective deep learning-based blockchain framework with reduced transaction cost is proposed to enhance the security of medical images in IoMT. The proposed study involves four different stages like image acquisition, encryption, optimal key generation, secured storing. The input images initially are collected in the image acquisition stage. Then, the collected medical images are encrypted using coupled map lattice (CML). This encryption process assists to preserve the input medical images from the attackers. In order to provide more confidentiality to the encrypted images, optimal keys are generated using opposition-based sparrow search optimization (O-SSO) algorithm. These encrypted images are stored using distributed ledger technology (DLT) and smart contract based blockchain technology. This blockchain technology enhances the data integrity and authenticity and allows secured transmission of medical images. After decrypting the image, the disease is diagnosed in the classification stage using proposed Recurrent Generative Neural Network (RGNN) model. The proposed study used python tool for simulation analysis and the medical images are gathered from CT images in COVID-19 dataset.","PeriodicalId":171432,"journal":{"name":"2022 International Conference on Knowledge Engineering and Communication Systems (ICKES)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach of Smart Contract based Distributed Ledger Technology using Deep Learning Techniques to Secure Medical Images\",\"authors\":\"Chandini A. G, P. I. Basarkod\",\"doi\":\"10.1109/ICKECS56523.2022.10060828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of Medical Things (IoMT) is on-demand research area, generally utilized in most of medical applications. Security is a challenging problem in decentralized platform while handling with medical data or images. An effective deep learning-based blockchain framework with reduced transaction cost is proposed to enhance the security of medical images in IoMT. The proposed study involves four different stages like image acquisition, encryption, optimal key generation, secured storing. The input images initially are collected in the image acquisition stage. Then, the collected medical images are encrypted using coupled map lattice (CML). This encryption process assists to preserve the input medical images from the attackers. In order to provide more confidentiality to the encrypted images, optimal keys are generated using opposition-based sparrow search optimization (O-SSO) algorithm. These encrypted images are stored using distributed ledger technology (DLT) and smart contract based blockchain technology. This blockchain technology enhances the data integrity and authenticity and allows secured transmission of medical images. After decrypting the image, the disease is diagnosed in the classification stage using proposed Recurrent Generative Neural Network (RGNN) model. The proposed study used python tool for simulation analysis and the medical images are gathered from CT images in COVID-19 dataset.\",\"PeriodicalId\":171432,\"journal\":{\"name\":\"2022 International Conference on Knowledge Engineering and Communication Systems (ICKES)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Knowledge Engineering and Communication Systems (ICKES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICKECS56523.2022.10060828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Knowledge Engineering and Communication Systems (ICKES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKECS56523.2022.10060828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Approach of Smart Contract based Distributed Ledger Technology using Deep Learning Techniques to Secure Medical Images
Internet of Medical Things (IoMT) is on-demand research area, generally utilized in most of medical applications. Security is a challenging problem in decentralized platform while handling with medical data or images. An effective deep learning-based blockchain framework with reduced transaction cost is proposed to enhance the security of medical images in IoMT. The proposed study involves four different stages like image acquisition, encryption, optimal key generation, secured storing. The input images initially are collected in the image acquisition stage. Then, the collected medical images are encrypted using coupled map lattice (CML). This encryption process assists to preserve the input medical images from the attackers. In order to provide more confidentiality to the encrypted images, optimal keys are generated using opposition-based sparrow search optimization (O-SSO) algorithm. These encrypted images are stored using distributed ledger technology (DLT) and smart contract based blockchain technology. This blockchain technology enhances the data integrity and authenticity and allows secured transmission of medical images. After decrypting the image, the disease is diagnosed in the classification stage using proposed Recurrent Generative Neural Network (RGNN) model. The proposed study used python tool for simulation analysis and the medical images are gathered from CT images in COVID-19 dataset.