基于云的物联网的前馈神经网络患者健康监测

P. Shukla, P. Shukla
{"title":"基于云的物联网的前馈神经网络患者健康监测","authors":"P. Shukla, P. Shukla","doi":"10.54216/jisiot.000203","DOIUrl":null,"url":null,"abstract":"The healthcare sector is under pressure to embrace new technologies that are available on the market in order to enhance the overall quality of their services. Telecommunications systems are combined with computers, interconnection, mobility, data storage, and information analytics. Technology that is centred on the Internet of Things (IoT) is the order of the day. Because of the limited availability of human resources and infrastructure, it is becoming more necessary to monitor chronic patients on a continual basis as their conditions worsen. A cloud-based architecture, which can handle all of the aforementioned concerns, may offer effective solutions to the health-care sector. In order to create software that combines cloud computing and mobile technologies for health care monitoring systems, we have set a goal of developing software. A technique developed by proposed method is used to extract steady fractal values from electrocardiogram (ECG) data, which has never been tried before by any other researcher in the area of creating a computer-aided diagnostic system for arrhythmia. Based on the findings, it can be concluded that the support vector machine has achieved the highest possible classification accuracy for fractal features. While being compared to the other two classifiers, which are the feed forward and feedback neural network models, the support vector machine outperforms them both. In addition, it should be highlighted that the sensitivity of the feed forward neural network and the support vector machine provide results that are comparable (92.08 percent and 90.36 percent, respectively).","PeriodicalId":122556,"journal":{"name":"Journal of Intelligent Systems and Internet of Things","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Patient Health Monitoring Using Feed Forward Neural Network With Cloud Based Internet of Things\",\"authors\":\"P. Shukla, P. Shukla\",\"doi\":\"10.54216/jisiot.000203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The healthcare sector is under pressure to embrace new technologies that are available on the market in order to enhance the overall quality of their services. Telecommunications systems are combined with computers, interconnection, mobility, data storage, and information analytics. Technology that is centred on the Internet of Things (IoT) is the order of the day. Because of the limited availability of human resources and infrastructure, it is becoming more necessary to monitor chronic patients on a continual basis as their conditions worsen. A cloud-based architecture, which can handle all of the aforementioned concerns, may offer effective solutions to the health-care sector. In order to create software that combines cloud computing and mobile technologies for health care monitoring systems, we have set a goal of developing software. A technique developed by proposed method is used to extract steady fractal values from electrocardiogram (ECG) data, which has never been tried before by any other researcher in the area of creating a computer-aided diagnostic system for arrhythmia. Based on the findings, it can be concluded that the support vector machine has achieved the highest possible classification accuracy for fractal features. While being compared to the other two classifiers, which are the feed forward and feedback neural network models, the support vector machine outperforms them both. In addition, it should be highlighted that the sensitivity of the feed forward neural network and the support vector machine provide results that are comparable (92.08 percent and 90.36 percent, respectively).\",\"PeriodicalId\":122556,\"journal\":{\"name\":\"Journal of Intelligent Systems and Internet of Things\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems and Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jisiot.000203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jisiot.000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

医疗保健部门面临压力,必须采用市场上现有的新技术,以提高其服务的整体质量。电信系统与计算机、互联、移动性、数据存储和信息分析相结合。以物联网(IoT)为中心的技术是当今的潮流。由于人力资源和基础设施有限,随着慢性病患者病情恶化,越来越有必要对其进行持续监测。基于云的架构可以处理上述所有问题,可以为医疗保健部门提供有效的解决方案。为了创建结合云计算和移动技术的医疗监控系统软件,我们设定了开发软件的目标。利用该方法开发的一种技术从心电图数据中提取稳定的分形值,这在创建心律失常计算机辅助诊断系统方面从未有其他研究人员尝试过。基于这些发现,可以得出结论,支持向量机对分形特征的分类精度达到了最高。与其他两种分类器(前馈和反馈神经网络模型)相比,支持向量机的性能优于两者。此外,应该强调的是,前馈神经网络和支持向量机的灵敏度提供的结果是相当的(分别为92.08%和90.36%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patient Health Monitoring Using Feed Forward Neural Network With Cloud Based Internet of Things
The healthcare sector is under pressure to embrace new technologies that are available on the market in order to enhance the overall quality of their services. Telecommunications systems are combined with computers, interconnection, mobility, data storage, and information analytics. Technology that is centred on the Internet of Things (IoT) is the order of the day. Because of the limited availability of human resources and infrastructure, it is becoming more necessary to monitor chronic patients on a continual basis as their conditions worsen. A cloud-based architecture, which can handle all of the aforementioned concerns, may offer effective solutions to the health-care sector. In order to create software that combines cloud computing and mobile technologies for health care monitoring systems, we have set a goal of developing software. A technique developed by proposed method is used to extract steady fractal values from electrocardiogram (ECG) data, which has never been tried before by any other researcher in the area of creating a computer-aided diagnostic system for arrhythmia. Based on the findings, it can be concluded that the support vector machine has achieved the highest possible classification accuracy for fractal features. While being compared to the other two classifiers, which are the feed forward and feedback neural network models, the support vector machine outperforms them both. In addition, it should be highlighted that the sensitivity of the feed forward neural network and the support vector machine provide results that are comparable (92.08 percent and 90.36 percent, respectively).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信