半结构化室外环境中的机器人视觉导航

D. Mateus, J. Aviña-Cervantes, M. Devy
{"title":"半结构化室外环境中的机器人视觉导航","authors":"D. Mateus, J. Aviña-Cervantes, M. Devy","doi":"10.1109/ROBOT.2005.1570844","DOIUrl":null,"url":null,"abstract":"This work describes a navigation framework for robots in semi-structured outdoor environments which enables planning of semantic tasks by chaining of elementary visual-based movement primitives. Navigation is achieved by understanding the underlying world behind the image and using these results as a guideline to control the robot. As retrieving semantic information from vision is computationally demanding, short-term tasks are planned and executed while new vision information is processed. Thanks to learning techniques, the methods are adapted to different environment conditions. Fusion and filtering techniques provide reliability and stability to the system. The procedures have been fully integrated and tested with a real robot in an experimental environment. Results are discussed.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Robot Visual Navigation in Semi-structured Outdoor Environments\",\"authors\":\"D. Mateus, J. Aviña-Cervantes, M. Devy\",\"doi\":\"10.1109/ROBOT.2005.1570844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes a navigation framework for robots in semi-structured outdoor environments which enables planning of semantic tasks by chaining of elementary visual-based movement primitives. Navigation is achieved by understanding the underlying world behind the image and using these results as a guideline to control the robot. As retrieving semantic information from vision is computationally demanding, short-term tasks are planned and executed while new vision information is processed. Thanks to learning techniques, the methods are adapted to different environment conditions. Fusion and filtering techniques provide reliability and stability to the system. The procedures have been fully integrated and tested with a real robot in an experimental environment. Results are discussed.\",\"PeriodicalId\":350878,\"journal\":{\"name\":\"Proceedings of the 2005 IEEE International Conference on Robotics and Automation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2005.1570844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

这项工作描述了半结构化户外环境中机器人的导航框架,该框架可以通过链接基本的基于视觉的运动原语来规划语义任务。导航是通过理解图像背后的潜在世界,并使用这些结果作为控制机器人的指导方针来实现的。由于从视觉中检索语义信息需要大量的计算量,因此在处理新视觉信息的同时,需要规划和执行短期任务。由于学习技巧,这些方法可以适应不同的环境条件。融合和滤波技术为系统提供了可靠性和稳定性。这些程序已经完全集成,并在一个真实的机器人在实验环境中进行了测试。对结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robot Visual Navigation in Semi-structured Outdoor Environments
This work describes a navigation framework for robots in semi-structured outdoor environments which enables planning of semantic tasks by chaining of elementary visual-based movement primitives. Navigation is achieved by understanding the underlying world behind the image and using these results as a guideline to control the robot. As retrieving semantic information from vision is computationally demanding, short-term tasks are planned and executed while new vision information is processed. Thanks to learning techniques, the methods are adapted to different environment conditions. Fusion and filtering techniques provide reliability and stability to the system. The procedures have been fully integrated and tested with a real robot in an experimental environment. Results are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信