MINI-SSD:自动驾驶中的快速目标检测框架

Shaimaa Ezz-ElDin, Omar Nabil, Hussam Murad, Farah Adel, Ahmed AbdEl-Jalil, K. Salah, Ayub Khan
{"title":"MINI-SSD:自动驾驶中的快速目标检测框架","authors":"Shaimaa Ezz-ElDin, Omar Nabil, Hussam Murad, Farah Adel, Ahmed AbdEl-Jalil, K. Salah, Ayub Khan","doi":"10.1109/UEMCON51285.2020.9298130","DOIUrl":null,"url":null,"abstract":"In this paper, a python-implemented infrastructure of a CNN-based multi-object detector in autonomous driving using the single shot detector (SSD) is presented. The infrastructure consists of both training and inference for object detection. The main contribution of this paper is the design of the default anchor boxes tiling that reduce the amount of computations by simplifying the software implementation of the SSD object detector. This simplification is done by reducing the data path of the proposed detector. Moreover, a decrease in the inference time of the detector is the result of using tiled defaults boxes and a small number of layers in the VGG CNN. In addition, the CNN model presents an advantage in terms of high confidence boxes prediction. The proposed approach is faster due to the reduced number of layers and computations. The segmentation design of the input image anchor boxes is introduced to explain the software implementation. In addition, both the training and validation loss variations along the period of the training are illustrated.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MINI-SSD: A Fast Object Detection Framework in Autonomous Driving\",\"authors\":\"Shaimaa Ezz-ElDin, Omar Nabil, Hussam Murad, Farah Adel, Ahmed AbdEl-Jalil, K. Salah, Ayub Khan\",\"doi\":\"10.1109/UEMCON51285.2020.9298130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a python-implemented infrastructure of a CNN-based multi-object detector in autonomous driving using the single shot detector (SSD) is presented. The infrastructure consists of both training and inference for object detection. The main contribution of this paper is the design of the default anchor boxes tiling that reduce the amount of computations by simplifying the software implementation of the SSD object detector. This simplification is done by reducing the data path of the proposed detector. Moreover, a decrease in the inference time of the detector is the result of using tiled defaults boxes and a small number of layers in the VGG CNN. In addition, the CNN model presents an advantage in terms of high confidence boxes prediction. The proposed approach is faster due to the reduced number of layers and computations. The segmentation design of the input image anchor boxes is introduced to explain the software implementation. In addition, both the training and validation loss variations along the period of the training are illustrated.\",\"PeriodicalId\":433609,\"journal\":{\"name\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON51285.2020.9298130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于cnn的基于单镜头检测器(SSD)的自动驾驶多目标检测器的python实现架构。该基础结构包括目标检测的训练和推理。本文的主要贡献是设计了默认锚框平铺,通过简化SSD对象检测器的软件实现来减少计算量。这种简化是通过减少所提出的检测器的数据路径来完成的。此外,在VGG CNN中使用平铺默认框和少量层的结果是检测器推理时间的减少。此外,CNN模型在高置信度盒预测方面具有优势。由于减少了层数和计算量,该方法的速度更快。介绍了输入图像锚盒的分割设计,说明了软件的实现。此外,还说明了训练损失和验证损失随训练周期的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MINI-SSD: A Fast Object Detection Framework in Autonomous Driving
In this paper, a python-implemented infrastructure of a CNN-based multi-object detector in autonomous driving using the single shot detector (SSD) is presented. The infrastructure consists of both training and inference for object detection. The main contribution of this paper is the design of the default anchor boxes tiling that reduce the amount of computations by simplifying the software implementation of the SSD object detector. This simplification is done by reducing the data path of the proposed detector. Moreover, a decrease in the inference time of the detector is the result of using tiled defaults boxes and a small number of layers in the VGG CNN. In addition, the CNN model presents an advantage in terms of high confidence boxes prediction. The proposed approach is faster due to the reduced number of layers and computations. The segmentation design of the input image anchor boxes is introduced to explain the software implementation. In addition, both the training and validation loss variations along the period of the training are illustrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信