{"title":"在不同等离子体功率下沉积的ITO薄膜的结构、光学和电学性质的研究:在SHJ太阳能电池中增强的性能和效率","authors":"Emre Kartal, İlker Duran, E. Damgaci, A. Seyhan","doi":"10.55696/ejset.1297942","DOIUrl":null,"url":null,"abstract":"This article presents an investigation into the structural, optical, and electrical properties of Indium Tin Oxide (ITO) films that were deposited utilizing various plasma powers. The transmittance values in the visible region were measured, revealing that the ITO film deposited at 2050 W exhibited the highest transmittance (81%). Additionally, the sheet resistance values of all films were analyzed, indicating that the ITO film deposited at 2050 W had the lowest sheet resistance (64.9 Ω/sq). By means of XRD analysis, the structural properties of the films were meticulously scrutinized, and the distinctive diffraction peaks associated with the ITO films were successfully identified. Notably, the ITO film deposited at 2050 W demonstrated superior performance compared to the other films deposited using various plasma powers. Finally, we report a noteworthy efficiency of 17.03% achieved in the SHJ solar cell fabricated with the ITO film deposited at 2050 W on a 5x5 cm2 n-type Si substrate.","PeriodicalId":143980,"journal":{"name":"Eurasian Journal of Science Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"INVESTIGATION OF STRUCTURAL, OPTICAL, AND ELECTRICAL PROPERTIES OF ITO FILMS DEPOSITED AT DIFFERENT PLASMA POWERS: ENHANCED PERFORMANCE AND EFFICIENCY IN SHJ SOLAR CELLS\",\"authors\":\"Emre Kartal, İlker Duran, E. Damgaci, A. Seyhan\",\"doi\":\"10.55696/ejset.1297942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an investigation into the structural, optical, and electrical properties of Indium Tin Oxide (ITO) films that were deposited utilizing various plasma powers. The transmittance values in the visible region were measured, revealing that the ITO film deposited at 2050 W exhibited the highest transmittance (81%). Additionally, the sheet resistance values of all films were analyzed, indicating that the ITO film deposited at 2050 W had the lowest sheet resistance (64.9 Ω/sq). By means of XRD analysis, the structural properties of the films were meticulously scrutinized, and the distinctive diffraction peaks associated with the ITO films were successfully identified. Notably, the ITO film deposited at 2050 W demonstrated superior performance compared to the other films deposited using various plasma powers. Finally, we report a noteworthy efficiency of 17.03% achieved in the SHJ solar cell fabricated with the ITO film deposited at 2050 W on a 5x5 cm2 n-type Si substrate.\",\"PeriodicalId\":143980,\"journal\":{\"name\":\"Eurasian Journal of Science Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Journal of Science Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55696/ejset.1297942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Science Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55696/ejset.1297942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INVESTIGATION OF STRUCTURAL, OPTICAL, AND ELECTRICAL PROPERTIES OF ITO FILMS DEPOSITED AT DIFFERENT PLASMA POWERS: ENHANCED PERFORMANCE AND EFFICIENCY IN SHJ SOLAR CELLS
This article presents an investigation into the structural, optical, and electrical properties of Indium Tin Oxide (ITO) films that were deposited utilizing various plasma powers. The transmittance values in the visible region were measured, revealing that the ITO film deposited at 2050 W exhibited the highest transmittance (81%). Additionally, the sheet resistance values of all films were analyzed, indicating that the ITO film deposited at 2050 W had the lowest sheet resistance (64.9 Ω/sq). By means of XRD analysis, the structural properties of the films were meticulously scrutinized, and the distinctive diffraction peaks associated with the ITO films were successfully identified. Notably, the ITO film deposited at 2050 W demonstrated superior performance compared to the other films deposited using various plasma powers. Finally, we report a noteworthy efficiency of 17.03% achieved in the SHJ solar cell fabricated with the ITO film deposited at 2050 W on a 5x5 cm2 n-type Si substrate.