基于神经网络的ATM多媒体流量预测

A. Tarraf, Ibrahim, Habib, T. Saadawi, Samira Ahmed
{"title":"基于神经网络的ATM多媒体流量预测","authors":"A. Tarraf, Ibrahim, Habib, T. Saadawi, Samira Ahmed","doi":"10.1109/GDN.1993.336583","DOIUrl":null,"url":null,"abstract":"Asynchronous transfer mode (ATM) broadband networks support a wide range of multimedia traffic (e.g. voice, video, image, and data). Accurate characterization of the multimedia traffic is essential, in ATM networks, in order to develop a robust set of traffic descriptors. Such set is required, by the usage parameter control (UPC) algorithm, for traffic enforcement (policing). In this paper, we present a novel approach to characterize and model the multimedia traffic using neural networks (NNs). A backpropagation neural network is used to characterize and predict the statistical variations of the packet arrival process resulting from the superposition of N packetized video sources and M packetized voice sources. The accuracy of the results were verified by matching the index of dispersion for counts (IDC), the variance, and the autocorrelation of the arrival process to those of the NN output. The reported results show that the NNs can be successfully utilized to characterize the complex non-renewal process with extreme accuracy.<<ETX>>","PeriodicalId":206154,"journal":{"name":"First IEEE Symposium on Global Data Networking","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"ATM multimedia traffic prediction using neural networks\",\"authors\":\"A. Tarraf, Ibrahim, Habib, T. Saadawi, Samira Ahmed\",\"doi\":\"10.1109/GDN.1993.336583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asynchronous transfer mode (ATM) broadband networks support a wide range of multimedia traffic (e.g. voice, video, image, and data). Accurate characterization of the multimedia traffic is essential, in ATM networks, in order to develop a robust set of traffic descriptors. Such set is required, by the usage parameter control (UPC) algorithm, for traffic enforcement (policing). In this paper, we present a novel approach to characterize and model the multimedia traffic using neural networks (NNs). A backpropagation neural network is used to characterize and predict the statistical variations of the packet arrival process resulting from the superposition of N packetized video sources and M packetized voice sources. The accuracy of the results were verified by matching the index of dispersion for counts (IDC), the variance, and the autocorrelation of the arrival process to those of the NN output. The reported results show that the NNs can be successfully utilized to characterize the complex non-renewal process with extreme accuracy.<<ETX>>\",\"PeriodicalId\":206154,\"journal\":{\"name\":\"First IEEE Symposium on Global Data Networking\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First IEEE Symposium on Global Data Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GDN.1993.336583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First IEEE Symposium on Global Data Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GDN.1993.336583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

异步传输模式(ATM)宽带网络支持广泛的多媒体业务(如语音、视频、图像和数据)。在ATM网络中,为了开发一套健壮的业务描述符,对多媒体业务进行准确的表征是至关重要的。使用参数控制(UPC)算法需要这样的集合来进行交通执法(警务)。本文提出了一种利用神经网络对多媒体流量进行表征和建模的新方法。利用反向传播神经网络对N个分组视频源和M个分组语音源的叠加所产生的数据包到达过程的统计变化进行表征和预测。通过将计数离散度指数(IDC)、方差和到达过程的自相关性与神经网络输出的自相关性进行匹配,验证了结果的准确性。报道的结果表明,神经网络可以成功地用于表征复杂的非更新过程,并且具有极高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ATM multimedia traffic prediction using neural networks
Asynchronous transfer mode (ATM) broadband networks support a wide range of multimedia traffic (e.g. voice, video, image, and data). Accurate characterization of the multimedia traffic is essential, in ATM networks, in order to develop a robust set of traffic descriptors. Such set is required, by the usage parameter control (UPC) algorithm, for traffic enforcement (policing). In this paper, we present a novel approach to characterize and model the multimedia traffic using neural networks (NNs). A backpropagation neural network is used to characterize and predict the statistical variations of the packet arrival process resulting from the superposition of N packetized video sources and M packetized voice sources. The accuracy of the results were verified by matching the index of dispersion for counts (IDC), the variance, and the autocorrelation of the arrival process to those of the NN output. The reported results show that the NNs can be successfully utilized to characterize the complex non-renewal process with extreme accuracy.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信