SSDP+:一种针对高维数据的多样化且信息量更大的子群发现方法

T. Lucas, Renato Vimieiro, Teresa B Ludermir
{"title":"SSDP+:一种针对高维数据的多样化且信息量更大的子群发现方法","authors":"T. Lucas, Renato Vimieiro, Teresa B Ludermir","doi":"10.1109/CEC.2018.8477855","DOIUrl":null,"url":null,"abstract":"This paper presents an evolutionary approach for mining diverse and more informative subgroups focused on high dimensional data sets. Subgroup Discovery (SD) is an important tool for knowledge discovery that aims to identify sets of features that distinguish a target group from the others (e.g. successful from unsuccessful treatments). At the same time, to extract information from high dimensional data sets becomes more natural. One of the first and most efficient SD heuristics focused on high dimensional data is the SSDP. However, this model deals superficially with diverse/redundancy in top-k subgroups, which can result in poor information for users. This work presents SSDP+, an extension of the SSDP model to provide diversity in a way that explore the relation between subgroups order to 2enerate a more informative set of patterns.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SSDP+: A Diverse and More Informative Subgroup Discovery Approach for High Dimensional Data\",\"authors\":\"T. Lucas, Renato Vimieiro, Teresa B Ludermir\",\"doi\":\"10.1109/CEC.2018.8477855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an evolutionary approach for mining diverse and more informative subgroups focused on high dimensional data sets. Subgroup Discovery (SD) is an important tool for knowledge discovery that aims to identify sets of features that distinguish a target group from the others (e.g. successful from unsuccessful treatments). At the same time, to extract information from high dimensional data sets becomes more natural. One of the first and most efficient SD heuristics focused on high dimensional data is the SSDP. However, this model deals superficially with diverse/redundancy in top-k subgroups, which can result in poor information for users. This work presents SSDP+, an extension of the SSDP model to provide diversity in a way that explore the relation between subgroups order to 2enerate a more informative set of patterns.\",\"PeriodicalId\":212677,\"journal\":{\"name\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2018.8477855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种进化方法,用于挖掘高维数据集上的多样化和更多信息的子群。子组发现(Subgroup Discovery, SD)是一种重要的知识发现工具,旨在识别目标群体与其他群体之间的特征集(例如,成功的治疗与不成功的治疗)。同时,从高维数据集中提取信息变得更加自然。第一种也是最有效的针对高维数据的SD启发式方法是SSDP。然而,该模型表面上处理top-k子组中的多样性/冗余,这可能会导致用户获得糟糕的信息。这项工作提出了SSDP+,这是SSDP模型的扩展,以一种探索子组之间关系的方式提供多样性,以便生成一组信息更丰富的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SSDP+: A Diverse and More Informative Subgroup Discovery Approach for High Dimensional Data
This paper presents an evolutionary approach for mining diverse and more informative subgroups focused on high dimensional data sets. Subgroup Discovery (SD) is an important tool for knowledge discovery that aims to identify sets of features that distinguish a target group from the others (e.g. successful from unsuccessful treatments). At the same time, to extract information from high dimensional data sets becomes more natural. One of the first and most efficient SD heuristics focused on high dimensional data is the SSDP. However, this model deals superficially with diverse/redundancy in top-k subgroups, which can result in poor information for users. This work presents SSDP+, an extension of the SSDP model to provide diversity in a way that explore the relation between subgroups order to 2enerate a more informative set of patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信