钢铁行业的深度指数价格预测

Thittaporn Ganokratanaa, M. Ketcham
{"title":"钢铁行业的深度指数价格预测","authors":"Thittaporn Ganokratanaa, M. Ketcham","doi":"10.1109/JCSSE53117.2021.9493843","DOIUrl":null,"url":null,"abstract":"Steel is one of the most expensive materials in the construction industry. Currently, Thailand imports steel from abroad, facing a price fluctuation due to the economy, production capacity, and consumption in domestic and international markets. The cost control of the steel price can also be unstable and risky to purchase. To handle these issues, there is a need for good management of the quantity and procurement of steel at the right price. Thus, we propose a prediction of the steel price index in construction using deep learning neuron networks. Our experimental results show good performance as our mean square error equals 2.34. Our proposed method can be applied for decision-making support and used as a reliable system for steel purchases in construction projects.","PeriodicalId":437534,"journal":{"name":"2021 18th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Index Price Forecasting in Steel Industry\",\"authors\":\"Thittaporn Ganokratanaa, M. Ketcham\",\"doi\":\"10.1109/JCSSE53117.2021.9493843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steel is one of the most expensive materials in the construction industry. Currently, Thailand imports steel from abroad, facing a price fluctuation due to the economy, production capacity, and consumption in domestic and international markets. The cost control of the steel price can also be unstable and risky to purchase. To handle these issues, there is a need for good management of the quantity and procurement of steel at the right price. Thus, we propose a prediction of the steel price index in construction using deep learning neuron networks. Our experimental results show good performance as our mean square error equals 2.34. Our proposed method can be applied for decision-making support and used as a reliable system for steel purchases in construction projects.\",\"PeriodicalId\":437534,\"journal\":{\"name\":\"2021 18th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE53117.2021.9493843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE53117.2021.9493843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

钢铁是建筑业中最昂贵的材料之一。目前,泰国从国外进口钢材,由于经济、产能以及国内外市场的消费,面临价格波动。钢材价格的成本控制也可能是不稳定和有风险的采购。为了解决这些问题,有必要对钢铁的数量和价格进行良好的管理。因此,我们提出了一种利用深度学习神经元网络预测建筑业钢材价格指数的方法。实验结果表明,我们的均方误差为2.34,性能良好。该方法可作为建设项目钢材采购决策支持的可靠系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Index Price Forecasting in Steel Industry
Steel is one of the most expensive materials in the construction industry. Currently, Thailand imports steel from abroad, facing a price fluctuation due to the economy, production capacity, and consumption in domestic and international markets. The cost control of the steel price can also be unstable and risky to purchase. To handle these issues, there is a need for good management of the quantity and procurement of steel at the right price. Thus, we propose a prediction of the steel price index in construction using deep learning neuron networks. Our experimental results show good performance as our mean square error equals 2.34. Our proposed method can be applied for decision-making support and used as a reliable system for steel purchases in construction projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信