基于概念漂移的小样本分类训练窗口的确定

I. Žliobaitė, L. Kuncheva
{"title":"基于概念漂移的小样本分类训练窗口的确定","authors":"I. Žliobaitė, L. Kuncheva","doi":"10.1109/ICDMW.2009.20","DOIUrl":null,"url":null,"abstract":"We consider classification of sequential data in the presence of frequent and abrupt concept changes. The current practice is to use the data after the change to train a new classifier. However, if the window with the new data is too small, the classifier will be undertrained and hence less accurate that the \"old'' classifier. Here we propose a method (called WR*) for resizing the training window after detecting a concept change. Experiments with synthetic and real data demonstrate the advantages of WR* over other window resizing methods.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Determining the Training Window for Small Sample Size Classification with Concept Drift\",\"authors\":\"I. Žliobaitė, L. Kuncheva\",\"doi\":\"10.1109/ICDMW.2009.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider classification of sequential data in the presence of frequent and abrupt concept changes. The current practice is to use the data after the change to train a new classifier. However, if the window with the new data is too small, the classifier will be undertrained and hence less accurate that the \\\"old'' classifier. Here we propose a method (called WR*) for resizing the training window after detecting a concept change. Experiments with synthetic and real data demonstrate the advantages of WR* over other window resizing methods.\",\"PeriodicalId\":351078,\"journal\":{\"name\":\"2009 IEEE International Conference on Data Mining Workshops\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2009.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们考虑序列数据的分类在存在频繁和突然的概念变化。目前的做法是使用更改后的数据来训练新的分类器。然而,如果新数据的窗口太小,分类器将被训练不足,因此不如“旧”分类器准确。在这里,我们提出了一种方法(称为WR*),用于在检测到概念变化后调整训练窗口的大小。合成数据和真实数据的实验证明了WR*方法相对于其他窗口大小调整方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining the Training Window for Small Sample Size Classification with Concept Drift
We consider classification of sequential data in the presence of frequent and abrupt concept changes. The current practice is to use the data after the change to train a new classifier. However, if the window with the new data is too small, the classifier will be undertrained and hence less accurate that the "old'' classifier. Here we propose a method (called WR*) for resizing the training window after detecting a concept change. Experiments with synthetic and real data demonstrate the advantages of WR* over other window resizing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信