拟重合意义下模糊软拓扑空间的一些性质

R. Amin
{"title":"拟重合意义下模糊软拓扑空间的一些性质","authors":"R. Amin","doi":"10.26782/jmcms.2022.04.00002","DOIUrl":null,"url":null,"abstract":"In this paper, we have introduced and studied some new notions of T0 separation axiom in fuzzy soft topological spaces using quasi-coincident relation for fuzzy soft points. We have shown a relationship between ours and other counterparts and observed that all these notions satisfy good extension, hereditary, productive, and projective properties. Moreover, we have also shown that these notions are preserved under one-one, onto, and fuzzy soft continuous mappings. Finally, initial and final soft topologies are studied also.","PeriodicalId":254600,"journal":{"name":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOME PROPERTIES OF T0 FUZZY SOFT TOPOLOGICAL SPACES IN QUASI-COINCIDENCE SENSE\",\"authors\":\"R. Amin\",\"doi\":\"10.26782/jmcms.2022.04.00002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have introduced and studied some new notions of T0 separation axiom in fuzzy soft topological spaces using quasi-coincident relation for fuzzy soft points. We have shown a relationship between ours and other counterparts and observed that all these notions satisfy good extension, hereditary, productive, and projective properties. Moreover, we have also shown that these notions are preserved under one-one, onto, and fuzzy soft continuous mappings. Finally, initial and final soft topologies are studied also.\",\"PeriodicalId\":254600,\"journal\":{\"name\":\"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26782/jmcms.2022.04.00002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26782/jmcms.2022.04.00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用模糊软点的拟重合关系,引入并研究了模糊软拓扑空间中T0分离公理的一些新概念。我们已经证明了我们的概念和其他同类概念之间的关系,并观察到所有这些概念都满足良好的可拓性、遗传性、生产性和射影性。此外,我们还证明了这些概念在一一映射、映上映射和模糊软连续映射下是保持的。最后,对初始和最终软拓扑进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOME PROPERTIES OF T0 FUZZY SOFT TOPOLOGICAL SPACES IN QUASI-COINCIDENCE SENSE
In this paper, we have introduced and studied some new notions of T0 separation axiom in fuzzy soft topological spaces using quasi-coincident relation for fuzzy soft points. We have shown a relationship between ours and other counterparts and observed that all these notions satisfy good extension, hereditary, productive, and projective properties. Moreover, we have also shown that these notions are preserved under one-one, onto, and fuzzy soft continuous mappings. Finally, initial and final soft topologies are studied also.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信