FinNLP-2022 ERAI任务概述:评估业余投资者的基本原理

Chung-Chi Chen, Hen-Hsen Huang, Hiroya Takamura, Hsin-Hsi Chen
{"title":"FinNLP-2022 ERAI任务概述:评估业余投资者的基本原理","authors":"Chung-Chi Chen, Hen-Hsen Huang, Hiroya Takamura, Hsin-Hsi Chen","doi":"10.18653/v1/2022.finnlp-1.11","DOIUrl":null,"url":null,"abstract":"This paper provides an overview of the shared task, Evaluating the Rationales of Amateur Investors (ERAI), in FinNLP-2022 at EMNLP-2022. This shared task aims to sort out investment opinions that would lead to higher profit from social platforms. We obtained 19 registered teams; 9 teams submitted their results for final evaluation, and 8 teams submitted papers to share their methods. The discussed directions are various: prompting, fine-tuning, translation system comparison, and tailor-made neural network architectures. We provide details of the task settings, data statistics, participants’ results, and fine-grained analysis.","PeriodicalId":331851,"journal":{"name":"Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Overview of the FinNLP-2022 ERAI Task: Evaluating the Rationales of Amateur Investors\",\"authors\":\"Chung-Chi Chen, Hen-Hsen Huang, Hiroya Takamura, Hsin-Hsi Chen\",\"doi\":\"10.18653/v1/2022.finnlp-1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides an overview of the shared task, Evaluating the Rationales of Amateur Investors (ERAI), in FinNLP-2022 at EMNLP-2022. This shared task aims to sort out investment opinions that would lead to higher profit from social platforms. We obtained 19 registered teams; 9 teams submitted their results for final evaluation, and 8 teams submitted papers to share their methods. The discussed directions are various: prompting, fine-tuning, translation system comparison, and tailor-made neural network architectures. We provide details of the task settings, data statistics, participants’ results, and fine-grained analysis.\",\"PeriodicalId\":331851,\"journal\":{\"name\":\"Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.finnlp-1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.finnlp-1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文概述了FinNLP-2022在EMNLP-2022中的共享任务,评估业余投资者的基本原理(ERAI)。这个共同的任务旨在整理投资意见,从而从社交平台中获得更高的利润。我们获得了19个注册团队;9个团队提交了最终评审结果,8个团队提交了论文分享他们的方法。讨论的方向是多种多样的:提示、微调、翻译系统比较和定制神经网络架构。我们提供任务设置、数据统计、参与者结果和细粒度分析的详细信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overview of the FinNLP-2022 ERAI Task: Evaluating the Rationales of Amateur Investors
This paper provides an overview of the shared task, Evaluating the Rationales of Amateur Investors (ERAI), in FinNLP-2022 at EMNLP-2022. This shared task aims to sort out investment opinions that would lead to higher profit from social platforms. We obtained 19 registered teams; 9 teams submitted their results for final evaluation, and 8 teams submitted papers to share their methods. The discussed directions are various: prompting, fine-tuning, translation system comparison, and tailor-made neural network architectures. We provide details of the task settings, data statistics, participants’ results, and fine-grained analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信