Chien-Yao Wang, Ping-Yang Chen, Ming-Chiao Chen, J. Hsieh, H. Liao
{"title":"基于轻量深度卷积网络的实时视频人物再识别监控","authors":"Chien-Yao Wang, Ping-Yang Chen, Ming-Chiao Chen, J. Hsieh, H. Liao","doi":"10.1109/AVSS.2019.8909855","DOIUrl":null,"url":null,"abstract":"Today's person re-ID system mostly focuses on accuracy and ignores efficiency. But in most real-world surveillance systems, efficiency is often considered the most important focus of research and development. Therefore, for a person re-ID system, the ability to perform real-time identification is the most important consideration. In this study, we implemented a real-time multiple camera video-based person re-ID system using the NVIDIA Jetson TX2 platform. This system can be used in a field that requires high privacy and immediate monitoring. This system uses YOLOv3-tiny based light-weight strategies and person re-ID technology, thus reducing 46% of computation, cutting down 39.9% of model size, and accelerating 21% of computing speed. The system also effectively upgrades the pedestrian detection accuracy. In addition, the proposed person re-ID example mining and training method improves the model's performance and enhances the robustness of cross-domain data. Our system also supports the pipeline formed by connecting multiple edge computing devices in series. The system can operate at a speed up to 18 fps at 1920×1080 surveillance video stream. The demo of our developed systems can be found at https://sites.google.com/g.ncu.edu.tw/video-based-person-re-id/.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real-Time Video-Based Person Re-Identification Surveillance with Light-Weight Deep Convolutional Networks\",\"authors\":\"Chien-Yao Wang, Ping-Yang Chen, Ming-Chiao Chen, J. Hsieh, H. Liao\",\"doi\":\"10.1109/AVSS.2019.8909855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's person re-ID system mostly focuses on accuracy and ignores efficiency. But in most real-world surveillance systems, efficiency is often considered the most important focus of research and development. Therefore, for a person re-ID system, the ability to perform real-time identification is the most important consideration. In this study, we implemented a real-time multiple camera video-based person re-ID system using the NVIDIA Jetson TX2 platform. This system can be used in a field that requires high privacy and immediate monitoring. This system uses YOLOv3-tiny based light-weight strategies and person re-ID technology, thus reducing 46% of computation, cutting down 39.9% of model size, and accelerating 21% of computing speed. The system also effectively upgrades the pedestrian detection accuracy. In addition, the proposed person re-ID example mining and training method improves the model's performance and enhances the robustness of cross-domain data. Our system also supports the pipeline formed by connecting multiple edge computing devices in series. The system can operate at a speed up to 18 fps at 1920×1080 surveillance video stream. The demo of our developed systems can be found at https://sites.google.com/g.ncu.edu.tw/video-based-person-re-id/.\",\"PeriodicalId\":243194,\"journal\":{\"name\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2019.8909855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Video-Based Person Re-Identification Surveillance with Light-Weight Deep Convolutional Networks
Today's person re-ID system mostly focuses on accuracy and ignores efficiency. But in most real-world surveillance systems, efficiency is often considered the most important focus of research and development. Therefore, for a person re-ID system, the ability to perform real-time identification is the most important consideration. In this study, we implemented a real-time multiple camera video-based person re-ID system using the NVIDIA Jetson TX2 platform. This system can be used in a field that requires high privacy and immediate monitoring. This system uses YOLOv3-tiny based light-weight strategies and person re-ID technology, thus reducing 46% of computation, cutting down 39.9% of model size, and accelerating 21% of computing speed. The system also effectively upgrades the pedestrian detection accuracy. In addition, the proposed person re-ID example mining and training method improves the model's performance and enhances the robustness of cross-domain data. Our system also supports the pipeline formed by connecting multiple edge computing devices in series. The system can operate at a speed up to 18 fps at 1920×1080 surveillance video stream. The demo of our developed systems can be found at https://sites.google.com/g.ncu.edu.tw/video-based-person-re-id/.