Meng-Hui Chen, Ching-Ying Chiu, P. Chang, S. Annadurai
{"title":"有能力车辆路径问题的混合两阶段扫描算法","authors":"Meng-Hui Chen, Ching-Ying Chiu, P. Chang, S. Annadurai","doi":"10.1109/ICCAR.2015.7166030","DOIUrl":null,"url":null,"abstract":"Capacitated Vehicle Routing Problem (CVRP) is a variant of Vehicle Routing Problem (VRP), where CVRP is only considered the capacity restrictions, and the object is to minimize the cost of the vehicles serve all customers. In this study, we proposed an approach which is hybrid two-phase sweep algorithm (SA) and greedy search for solving CVRP. At the first stage of SA, all customers are clustered by SA and define each cluster as a block. The second stage is to reconstruct each neighbour clusters based on the first stage. Then the greedy search is applied to minimize the cost of each vehicle. Finally, the computational result on standard instances show the proposed approach is effective.","PeriodicalId":422587,"journal":{"name":"2015 International Conference on Control, Automation and Robotics","volume":"147-149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A hybrid two-stage sweep algorithm for capacitated vehicle routing problem\",\"authors\":\"Meng-Hui Chen, Ching-Ying Chiu, P. Chang, S. Annadurai\",\"doi\":\"10.1109/ICCAR.2015.7166030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capacitated Vehicle Routing Problem (CVRP) is a variant of Vehicle Routing Problem (VRP), where CVRP is only considered the capacity restrictions, and the object is to minimize the cost of the vehicles serve all customers. In this study, we proposed an approach which is hybrid two-phase sweep algorithm (SA) and greedy search for solving CVRP. At the first stage of SA, all customers are clustered by SA and define each cluster as a block. The second stage is to reconstruct each neighbour clusters based on the first stage. Then the greedy search is applied to minimize the cost of each vehicle. Finally, the computational result on standard instances show the proposed approach is effective.\",\"PeriodicalId\":422587,\"journal\":{\"name\":\"2015 International Conference on Control, Automation and Robotics\",\"volume\":\"147-149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Control, Automation and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAR.2015.7166030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Control, Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR.2015.7166030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hybrid two-stage sweep algorithm for capacitated vehicle routing problem
Capacitated Vehicle Routing Problem (CVRP) is a variant of Vehicle Routing Problem (VRP), where CVRP is only considered the capacity restrictions, and the object is to minimize the cost of the vehicles serve all customers. In this study, we proposed an approach which is hybrid two-phase sweep algorithm (SA) and greedy search for solving CVRP. At the first stage of SA, all customers are clustered by SA and define each cluster as a block. The second stage is to reconstruct each neighbour clusters based on the first stage. Then the greedy search is applied to minimize the cost of each vehicle. Finally, the computational result on standard instances show the proposed approach is effective.