{"title":"不定非线性伪相对论方程正解的单调性和不存在性","authors":"Yuxia Guo, Shaolong Peng","doi":"10.3934/cpaa.2022037","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we consider the following general pseudo-relativistic Schrödinger equation with indefinite nonlinearities:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ (-\\Delta+m^{2})^{s}u = a(x_1)f\\left(u,\\nabla u\\right),\\quad {\\rm{in}} \\,\\,\\mathbb R^{N}, $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ s\\in(0,1) $\\end{document}</tex-math></inline-formula>, mass <inline-formula><tex-math id=\"M2\">\\begin{document}$ m>0 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M3\">\\begin{document}$ a $\\end{document}</tex-math></inline-formula> is a non-decreasing functions. We prove the nonexistence and the monotonicity of the positive bounded solution for the above equation via the direct method of moving planes.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Monotonicity and nonexistence of positive solutions for pseudo-relativistic equation with indefinite nonlinearity\",\"authors\":\"Yuxia Guo, Shaolong Peng\",\"doi\":\"10.3934/cpaa.2022037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, we consider the following general pseudo-relativistic Schrödinger equation with indefinite nonlinearities:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ (-\\\\Delta+m^{2})^{s}u = a(x_1)f\\\\left(u,\\\\nabla u\\\\right),\\\\quad {\\\\rm{in}} \\\\,\\\\,\\\\mathbb R^{N}, $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ s\\\\in(0,1) $\\\\end{document}</tex-math></inline-formula>, mass <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ m>0 $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ a $\\\\end{document}</tex-math></inline-formula> is a non-decreasing functions. We prove the nonexistence and the monotonicity of the positive bounded solution for the above equation via the direct method of moving planes.</p>\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure & Applied Analysis\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure & Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
In this paper, we consider the following general pseudo-relativistic Schrödinger equation with indefinite nonlinearities: \begin{document}$ (-\Delta+m^{2})^{s}u = a(x_1)f\left(u,\nabla u\right),\quad {\rm{in}} \,\,\mathbb R^{N}, $\end{document} where \begin{document}$ s\in(0,1) $\end{document}, mass \begin{document}$ m>0 $\end{document} and \begin{document}$ a $\end{document} is a non-decreasing functions. We prove the nonexistence and the monotonicity of the positive bounded solution for the above equation via the direct method of moving planes.
where \begin{document}$ s\in(0,1) $\end{document}, mass \begin{document}$ m>0 $\end{document} and \begin{document}$ a $\end{document} is a non-decreasing functions. We prove the nonexistence and the monotonicity of the positive bounded solution for the above equation via the direct method of moving planes.