Jesica Nauli Br. Siringo Ringo, Wahyu Joko Mursalin, Nisrina Citra Nurfadilah, Dwiky Rachmat Ramadhan, Wa Ode Zuhayeni Madjida
{"title":"在爪哇岛的COVID-19风险区域地图的多级分类比较","authors":"Jesica Nauli Br. Siringo Ringo, Wahyu Joko Mursalin, Nisrina Citra Nurfadilah, Dwiky Rachmat Ramadhan, Wa Ode Zuhayeni Madjida","doi":"10.35508/JICON.V9I1.3602","DOIUrl":null,"url":null,"abstract":"Penambahan kasus COVID-19 yang besar di Indonesia, khususnya Pulau Jawa, membutuhkan berbagai upaya untuk mengendalikannya. Salah satu upaya efektif yang dapat dilakukan adalah tindakan preventif dengan memberi informasi mengenai kondisi suatu wilayah. Sebagai peringatan kepada masyarakat dan sebagai upaya pengambilan kebijakan daerah, Indonesia mengeluarkan zona risiko sampai pada tingkat kabupaten/kota melalui Satgas Penanganan COVID-19. Pembentukan level zona risiko tersebut menggunakan teknik konvensional yaitu pembobotan skor menggunakan informasi dari tiga jenis indikator. Dengan mempertimbangkan bahwa zona risiko merupakan hal yang penting dalam penentuan kebijakan terkait COVID-19, penelitian ini bertujuan untuk membangun model klasifikasi zona risiko kabupaten/kota di Pulau Jawa menggunakan beberapa teknik klasifikasi data mining dan menentukan model klasifikasi terbaik berdasarkan hasil evaluasi. Teknik klasifikasi yang digunakan sebagai perbandingan dalam penelitian ini adalah naive Bayes, decision tree, k-nearest-neighbor, dan neural network. Sebelum dilakukan pemodelan, data disesuaikan terlebih dahulu pada tahap preprocessing di mana pada tahap tersebut teridentifikasi terdapat permasalahan missing value dan imbalanced data. Permasalahan tersebut diatasi dengan imputasi data dan teknik oversampling. Hasil penelitian menunjukkan bahwa model k-nearest-neighbor merupakan model terbaik dibandingkan tiga model lainnya. Hasil tersebut didasarkan pada ukuran evaluasi keempat model di mana model k-NN memiliki nilai acccuracy, nilai rata-rata makro untuk sensitivitas, spesifisitas, dan ukuran F1 paling tinggi dibandingkan model lainnya.","PeriodicalId":334895,"journal":{"name":"Jurnal Komputer dan Informatika","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perbandingan Metode Klasifikasi Multiclass untuk Pemetaan Zona Risiko COVID-19 di Pulau Jawa\",\"authors\":\"Jesica Nauli Br. Siringo Ringo, Wahyu Joko Mursalin, Nisrina Citra Nurfadilah, Dwiky Rachmat Ramadhan, Wa Ode Zuhayeni Madjida\",\"doi\":\"10.35508/JICON.V9I1.3602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penambahan kasus COVID-19 yang besar di Indonesia, khususnya Pulau Jawa, membutuhkan berbagai upaya untuk mengendalikannya. Salah satu upaya efektif yang dapat dilakukan adalah tindakan preventif dengan memberi informasi mengenai kondisi suatu wilayah. Sebagai peringatan kepada masyarakat dan sebagai upaya pengambilan kebijakan daerah, Indonesia mengeluarkan zona risiko sampai pada tingkat kabupaten/kota melalui Satgas Penanganan COVID-19. Pembentukan level zona risiko tersebut menggunakan teknik konvensional yaitu pembobotan skor menggunakan informasi dari tiga jenis indikator. Dengan mempertimbangkan bahwa zona risiko merupakan hal yang penting dalam penentuan kebijakan terkait COVID-19, penelitian ini bertujuan untuk membangun model klasifikasi zona risiko kabupaten/kota di Pulau Jawa menggunakan beberapa teknik klasifikasi data mining dan menentukan model klasifikasi terbaik berdasarkan hasil evaluasi. Teknik klasifikasi yang digunakan sebagai perbandingan dalam penelitian ini adalah naive Bayes, decision tree, k-nearest-neighbor, dan neural network. Sebelum dilakukan pemodelan, data disesuaikan terlebih dahulu pada tahap preprocessing di mana pada tahap tersebut teridentifikasi terdapat permasalahan missing value dan imbalanced data. Permasalahan tersebut diatasi dengan imputasi data dan teknik oversampling. Hasil penelitian menunjukkan bahwa model k-nearest-neighbor merupakan model terbaik dibandingkan tiga model lainnya. Hasil tersebut didasarkan pada ukuran evaluasi keempat model di mana model k-NN memiliki nilai acccuracy, nilai rata-rata makro untuk sensitivitas, spesifisitas, dan ukuran F1 paling tinggi dibandingkan model lainnya.\",\"PeriodicalId\":334895,\"journal\":{\"name\":\"Jurnal Komputer dan Informatika\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Komputer dan Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35508/JICON.V9I1.3602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komputer dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35508/JICON.V9I1.3602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perbandingan Metode Klasifikasi Multiclass untuk Pemetaan Zona Risiko COVID-19 di Pulau Jawa
Penambahan kasus COVID-19 yang besar di Indonesia, khususnya Pulau Jawa, membutuhkan berbagai upaya untuk mengendalikannya. Salah satu upaya efektif yang dapat dilakukan adalah tindakan preventif dengan memberi informasi mengenai kondisi suatu wilayah. Sebagai peringatan kepada masyarakat dan sebagai upaya pengambilan kebijakan daerah, Indonesia mengeluarkan zona risiko sampai pada tingkat kabupaten/kota melalui Satgas Penanganan COVID-19. Pembentukan level zona risiko tersebut menggunakan teknik konvensional yaitu pembobotan skor menggunakan informasi dari tiga jenis indikator. Dengan mempertimbangkan bahwa zona risiko merupakan hal yang penting dalam penentuan kebijakan terkait COVID-19, penelitian ini bertujuan untuk membangun model klasifikasi zona risiko kabupaten/kota di Pulau Jawa menggunakan beberapa teknik klasifikasi data mining dan menentukan model klasifikasi terbaik berdasarkan hasil evaluasi. Teknik klasifikasi yang digunakan sebagai perbandingan dalam penelitian ini adalah naive Bayes, decision tree, k-nearest-neighbor, dan neural network. Sebelum dilakukan pemodelan, data disesuaikan terlebih dahulu pada tahap preprocessing di mana pada tahap tersebut teridentifikasi terdapat permasalahan missing value dan imbalanced data. Permasalahan tersebut diatasi dengan imputasi data dan teknik oversampling. Hasil penelitian menunjukkan bahwa model k-nearest-neighbor merupakan model terbaik dibandingkan tiga model lainnya. Hasil tersebut didasarkan pada ukuran evaluasi keempat model di mana model k-NN memiliki nilai acccuracy, nilai rata-rata makro untuk sensitivitas, spesifisitas, dan ukuran F1 paling tinggi dibandingkan model lainnya.