使用深度学习结果的物联网环境情境推理框架

Seyoung Park, Mye Sohn, Haeran Jin, Hyun-Jung Lee
{"title":"使用深度学习结果的物联网环境情境推理框架","authors":"Seyoung Park, Mye Sohn, Haeran Jin, Hyun-Jung Lee","doi":"10.1109/ICKEA.2016.7803006","DOIUrl":null,"url":null,"abstract":"A goal of this paper is to suggest a framework to infer the situation using IOT sensor data. To do so, the framework adopts contexts which were derived from the learning results of multiple deep neural networks for IOT sensor data and carries out hierarchical clustering of contexts in terms of the spatio-temporality. With the learned dendrogram, the most appropriate situation is inferred from case-based reasoning depending on the similar time and location. The result of reasoning is stored in a case memory and this can contribute to learning of a case base. The primary contribution of this paper is the situation reasoning under consideration for spatio-temporality that is a characteristic of IOT sensor data. Also, we performed experiments to show the superiority of our framework. The experimental results are not bad for a first attempt. In further research, if the algorithms are improved, we can expect better results.","PeriodicalId":241850,"journal":{"name":"2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Situation reasoning framework for the Internet of Things environments using deep learning results\",\"authors\":\"Seyoung Park, Mye Sohn, Haeran Jin, Hyun-Jung Lee\",\"doi\":\"10.1109/ICKEA.2016.7803006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A goal of this paper is to suggest a framework to infer the situation using IOT sensor data. To do so, the framework adopts contexts which were derived from the learning results of multiple deep neural networks for IOT sensor data and carries out hierarchical clustering of contexts in terms of the spatio-temporality. With the learned dendrogram, the most appropriate situation is inferred from case-based reasoning depending on the similar time and location. The result of reasoning is stored in a case memory and this can contribute to learning of a case base. The primary contribution of this paper is the situation reasoning under consideration for spatio-temporality that is a characteristic of IOT sensor data. Also, we performed experiments to show the superiority of our framework. The experimental results are not bad for a first attempt. In further research, if the algorithms are improved, we can expect better results.\",\"PeriodicalId\":241850,\"journal\":{\"name\":\"2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICKEA.2016.7803006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKEA.2016.7803006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文的目标是提出一个使用物联网传感器数据推断情况的框架。为此,该框架采用来自多个深度神经网络对IOT传感器数据的学习结果的上下文,并根据时空对上下文进行分层聚类。通过学习到的树形图,根据相似的时间和地点,从基于案例的推理中推断出最合适的情况。推理的结果存储在案例存储器中,这有助于案例库的学习。本文的主要贡献是考虑到物联网传感器数据的时空特征的情况推理。此外,我们进行了实验,以证明我们的框架的优越性。就第一次尝试而言,实验结果还不错。在进一步的研究中,如果算法得到改进,我们可以期待更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Situation reasoning framework for the Internet of Things environments using deep learning results
A goal of this paper is to suggest a framework to infer the situation using IOT sensor data. To do so, the framework adopts contexts which were derived from the learning results of multiple deep neural networks for IOT sensor data and carries out hierarchical clustering of contexts in terms of the spatio-temporality. With the learned dendrogram, the most appropriate situation is inferred from case-based reasoning depending on the similar time and location. The result of reasoning is stored in a case memory and this can contribute to learning of a case base. The primary contribution of this paper is the situation reasoning under consideration for spatio-temporality that is a characteristic of IOT sensor data. Also, we performed experiments to show the superiority of our framework. The experimental results are not bad for a first attempt. In further research, if the algorithms are improved, we can expect better results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信