基于分层特征点匹配的图像复制-移动伪造检测

Yuanman Li, Jiantao Zhou
{"title":"基于分层特征点匹配的图像复制-移动伪造检测","authors":"Yuanman Li, Jiantao Zhou","doi":"10.1109/APSIPA.2016.7820758","DOIUrl":null,"url":null,"abstract":"Copy-move forgery is one of the most commonly used manipulations for tempering digital images. Keypoint-based detection methods have been reported to be very effective in revealing copy-move evidences, due to their robustness against geometric transforms. However, these methods fail to handle the cases when copy-move forgery only involves small or smooth regions, where the number of keypoints is very limited. To tackle this challenge, we propose a simple yet effective copy-move forgery detection approach. By lowering the contrast threshold and rescaling the input image, we first generate a sufficient number of keypoints that exist even in the small or smooth regions. Then, a novel hierarchical matching strategy is developed for solving the keypoint matching problems. Finally, a novel iterative homography estimation technique is suggested through exploiting the dominant orientation information of each keypoint. Extensive experimental results are provided to demonstrate the superior performance of the proposed scheme.","PeriodicalId":409448,"journal":{"name":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Image copy-move forgery detection using hierarchical feature point matching\",\"authors\":\"Yuanman Li, Jiantao Zhou\",\"doi\":\"10.1109/APSIPA.2016.7820758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copy-move forgery is one of the most commonly used manipulations for tempering digital images. Keypoint-based detection methods have been reported to be very effective in revealing copy-move evidences, due to their robustness against geometric transforms. However, these methods fail to handle the cases when copy-move forgery only involves small or smooth regions, where the number of keypoints is very limited. To tackle this challenge, we propose a simple yet effective copy-move forgery detection approach. By lowering the contrast threshold and rescaling the input image, we first generate a sufficient number of keypoints that exist even in the small or smooth regions. Then, a novel hierarchical matching strategy is developed for solving the keypoint matching problems. Finally, a novel iterative homography estimation technique is suggested through exploiting the dominant orientation information of each keypoint. Extensive experimental results are provided to demonstrate the superior performance of the proposed scheme.\",\"PeriodicalId\":409448,\"journal\":{\"name\":\"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2016.7820758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2016.7820758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

复制-移动伪造是篡改数字图像最常用的手法之一。据报道,基于关键点的检测方法在揭示复制移动证据方面非常有效,因为它们对几何变换具有鲁棒性。然而,这些方法无法处理复制-移动伪造仅涉及小区域或光滑区域的情况,这些区域的关键点数量非常有限。为了解决这一挑战,我们提出了一种简单而有效的复制-移动伪造检测方法。通过降低对比度阈值和重新缩放输入图像,我们首先生成足够数量的关键点,即使在小区域或光滑区域也存在。然后,提出了一种新的分层匹配策略来解决关键点匹配问题。最后,利用各关键点的优势方向信息,提出了一种新的迭代单应性估计技术。大量的实验结果证明了该方案的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image copy-move forgery detection using hierarchical feature point matching
Copy-move forgery is one of the most commonly used manipulations for tempering digital images. Keypoint-based detection methods have been reported to be very effective in revealing copy-move evidences, due to their robustness against geometric transforms. However, these methods fail to handle the cases when copy-move forgery only involves small or smooth regions, where the number of keypoints is very limited. To tackle this challenge, we propose a simple yet effective copy-move forgery detection approach. By lowering the contrast threshold and rescaling the input image, we first generate a sufficient number of keypoints that exist even in the small or smooth regions. Then, a novel hierarchical matching strategy is developed for solving the keypoint matching problems. Finally, a novel iterative homography estimation technique is suggested through exploiting the dominant orientation information of each keypoint. Extensive experimental results are provided to demonstrate the superior performance of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信