自主库存机器人的MIMO超高频rfid SAR三维定位系统

Matthias Gareis, C. Carlowitz, M. Vossiek
{"title":"自主库存机器人的MIMO超高频rfid SAR三维定位系统","authors":"Matthias Gareis, C. Carlowitz, M. Vossiek","doi":"10.1109/ICMIM48759.2020.9298989","DOIUrl":null,"url":null,"abstract":"As ultrahigh frequency (UHF) radio-frequency identification (RFID) is a cost-efficient, reliable technology, its use for Internet of Things applications is very attractive. The goal of three-dimensional (3D) product maps for smart warehouses is very challenging, but can be achieved with UHF-RFID. Therefore, we equipped a mobile robot platform with a commercial RFID reader and added a switching matrix to integrate a multiple input—multiple output (MIMO) synthetic aperture radar based localization concept (SARFID) with the use of eight antennas. The mobile robot platform and the MIMO localization technique together demonstrate good tag localization results. We evaluate both single-dimensional and two-dimensional synthetic aperture radar (SAR) trajectories. Their shapes are the main contributor to the achievable accuracy. The robot position is acquired by the robot’s odometry data. Despite the substantial error in the robot position, we generate 3D product maps with tags labeled on objects and achieve a 3D root mean square error (RMSE) of 3.8 cm.","PeriodicalId":150515,"journal":{"name":"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A MIMO UHF-RFID SAR 3D Locating System for Autonomous Inventory Robots\",\"authors\":\"Matthias Gareis, C. Carlowitz, M. Vossiek\",\"doi\":\"10.1109/ICMIM48759.2020.9298989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As ultrahigh frequency (UHF) radio-frequency identification (RFID) is a cost-efficient, reliable technology, its use for Internet of Things applications is very attractive. The goal of three-dimensional (3D) product maps for smart warehouses is very challenging, but can be achieved with UHF-RFID. Therefore, we equipped a mobile robot platform with a commercial RFID reader and added a switching matrix to integrate a multiple input—multiple output (MIMO) synthetic aperture radar based localization concept (SARFID) with the use of eight antennas. The mobile robot platform and the MIMO localization technique together demonstrate good tag localization results. We evaluate both single-dimensional and two-dimensional synthetic aperture radar (SAR) trajectories. Their shapes are the main contributor to the achievable accuracy. The robot position is acquired by the robot’s odometry data. Despite the substantial error in the robot position, we generate 3D product maps with tags labeled on objects and achieve a 3D root mean square error (RMSE) of 3.8 cm.\",\"PeriodicalId\":150515,\"journal\":{\"name\":\"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIM48759.2020.9298989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM48759.2020.9298989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于超高频(UHF)射频识别(RFID)是一种经济高效、可靠的技术,其在物联网应用中的应用是非常有吸引力的。智能仓库的三维(3D)产品地图的目标非常具有挑战性,但可以通过UHF-RFID实现。因此,我们为移动机器人平台配备了商用RFID读取器,并增加了一个开关矩阵,以集成多输入多输出(MIMO)合成孔径雷达定位概念(SARFID)和使用八个天线。移动机器人平台和MIMO定位技术共同证明了良好的标签定位效果。我们评估了一维和二维合成孔径雷达(SAR)轨迹。它们的形状是实现精度的主要因素。机器人的位置是通过机器人的里程计数据获得的。尽管机器人位置存在很大误差,但我们生成了带有标签的3D产品地图,并实现了3.8厘米的3D均方根误差(RMSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A MIMO UHF-RFID SAR 3D Locating System for Autonomous Inventory Robots
As ultrahigh frequency (UHF) radio-frequency identification (RFID) is a cost-efficient, reliable technology, its use for Internet of Things applications is very attractive. The goal of three-dimensional (3D) product maps for smart warehouses is very challenging, but can be achieved with UHF-RFID. Therefore, we equipped a mobile robot platform with a commercial RFID reader and added a switching matrix to integrate a multiple input—multiple output (MIMO) synthetic aperture radar based localization concept (SARFID) with the use of eight antennas. The mobile robot platform and the MIMO localization technique together demonstrate good tag localization results. We evaluate both single-dimensional and two-dimensional synthetic aperture radar (SAR) trajectories. Their shapes are the main contributor to the achievable accuracy. The robot position is acquired by the robot’s odometry data. Despite the substantial error in the robot position, we generate 3D product maps with tags labeled on objects and achieve a 3D root mean square error (RMSE) of 3.8 cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信