基于效用分解的激励最优广告分配

F. Kelly, P. Key, N. Walton
{"title":"基于效用分解的激励最优广告分配","authors":"F. Kelly, P. Key, N. Walton","doi":"10.1145/2600057.2602849","DOIUrl":null,"url":null,"abstract":"We consider a large-scale Ad-auction where adverts are assigned over a potentially infinite number of searches. We capture the intrinsic asymmetries in information between advertisers, the advert platform and the space of searches: advertisers know and can optimize the average performance of their advertisement campaign; the platform knows and can optimize on each search instance; and, neither party knows the distribution of the infinite number of searches that can occur. We look at maximizing the aggregate utility of the click-through rates of advertisers subject to the matching constraints of online ad allocation. We show that this optimization can be decomposed into subproblems, which occur on timescales relevant to the platform or the advertisers respectively. The interpretation of the subproblems is that advertisers choose prices which are optimal given the average click-through rate they receive, that the platform allocates adverts according to a classical assignment problem per search impression and that prices satisfy a nominal complementary slackness condition. We then place this optimization result in a game-theoretic framework by assuming that advertisers bid strategically to maximize their net benefit. In this setting, we construct a mechanism with a unique Nash equilibrium that achieves the decomposition just described, and thus maximizes aggregate utility. This simple and implementable mechanism is as follows. When a search occurs, the platform allocates advertisement slots in order to maximize the expected bid from a click-throughs - this is a classical assignment problem. If an advert receives a click, the platform then solves the assignment problem a second time with the advertiser's bid replaced by a bid which is uniformly distributed between zero and the original bid. The advertiser is then charged their bid minus a rebate. The rebate is the product of the advertiser's bid and ratio of the advertiser's click-through rate in the second assignment calculation (after a click-through) to the first assignment click-through rate (before the click-through). We demonstrate that, under the assignment and pricing mechanism just described, advertisers bidding strategically will maximize aggregate utility. The novelty of the mechanism just described is that, while maximizing utilitarian objective, it can be implemented by the platform in a strategic environment on the time-scales relevant to the platform (per-impression) and advertiser (on-average) respectively, and neither party requires information on the distribution of searches. We also show that dynamic models, where advertisers adapt their bids smoothly over time, will converge to the solution that maximizes aggregate utility.","PeriodicalId":203155,"journal":{"name":"Proceedings of the fifteenth ACM conference on Economics and computation","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Incentivized optimal advert assignment via utility decomposition\",\"authors\":\"F. Kelly, P. Key, N. Walton\",\"doi\":\"10.1145/2600057.2602849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a large-scale Ad-auction where adverts are assigned over a potentially infinite number of searches. We capture the intrinsic asymmetries in information between advertisers, the advert platform and the space of searches: advertisers know and can optimize the average performance of their advertisement campaign; the platform knows and can optimize on each search instance; and, neither party knows the distribution of the infinite number of searches that can occur. We look at maximizing the aggregate utility of the click-through rates of advertisers subject to the matching constraints of online ad allocation. We show that this optimization can be decomposed into subproblems, which occur on timescales relevant to the platform or the advertisers respectively. The interpretation of the subproblems is that advertisers choose prices which are optimal given the average click-through rate they receive, that the platform allocates adverts according to a classical assignment problem per search impression and that prices satisfy a nominal complementary slackness condition. We then place this optimization result in a game-theoretic framework by assuming that advertisers bid strategically to maximize their net benefit. In this setting, we construct a mechanism with a unique Nash equilibrium that achieves the decomposition just described, and thus maximizes aggregate utility. This simple and implementable mechanism is as follows. When a search occurs, the platform allocates advertisement slots in order to maximize the expected bid from a click-throughs - this is a classical assignment problem. If an advert receives a click, the platform then solves the assignment problem a second time with the advertiser's bid replaced by a bid which is uniformly distributed between zero and the original bid. The advertiser is then charged their bid minus a rebate. The rebate is the product of the advertiser's bid and ratio of the advertiser's click-through rate in the second assignment calculation (after a click-through) to the first assignment click-through rate (before the click-through). We demonstrate that, under the assignment and pricing mechanism just described, advertisers bidding strategically will maximize aggregate utility. The novelty of the mechanism just described is that, while maximizing utilitarian objective, it can be implemented by the platform in a strategic environment on the time-scales relevant to the platform (per-impression) and advertiser (on-average) respectively, and neither party requires information on the distribution of searches. We also show that dynamic models, where advertisers adapt their bids smoothly over time, will converge to the solution that maximizes aggregate utility.\",\"PeriodicalId\":203155,\"journal\":{\"name\":\"Proceedings of the fifteenth ACM conference on Economics and computation\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the fifteenth ACM conference on Economics and computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2600057.2602849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifteenth ACM conference on Economics and computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2600057.2602849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑一个大规模的广告拍卖,其中广告被分配给潜在无限数量的搜索。我们捕捉到广告主、广告平台和搜索空间之间信息的内在不对称:广告主知道并能够优化其广告活动的平均表现;平台知道并能对每个搜索实例进行优化;而且,双方都不知道可能发生的无限数量的搜索的分布。我们着眼于最大化受在线广告分配匹配约束的广告主点击率的总效用。我们表明,这种优化可以分解成子问题,这些子问题分别发生在与平台或广告商相关的时间尺度上。子问题的解释是,广告商根据他们收到的平均点击率选择最优价格,平台根据每个搜索印象的经典分配问题分配广告,价格满足名义上的互补松弛条件。然后,我们将这个优化结果置于博弈论框架中,假设广告商策略性地出价以最大化他们的净收益。在这种情况下,我们构建了一个具有独特纳什均衡的机制,实现了刚刚描述的分解,从而最大化了总效用。这个简单且可实现的机制如下。当搜索发生时,平台会分配广告位,以便从点击量中获得最大的预期出价——这是一个经典的分配问题。如果广告获得点击,平台将再次解决分配问题,将广告客户的出价替换为在零和原始出价之间均匀分布的出价。然后向广告商收取他们的出价减去回扣。回扣是广告主的出价和广告主在第二次分配计算中的点击率(在点击率之后)与第一次分配的点击率(在点击率之前)之比的乘积。我们证明,在刚刚描述的分配和定价机制下,广告商策略性投标将最大化总效用。上述机制的新颖之处在于,在最大化功利目标的同时,它可以由平台在与平台(每次印象)和广告商(平均)相关的战略环境中分别实施,双方都不需要关于搜索分布的信息。我们还展示了动态模型,其中广告商随着时间的推移平滑地调整他们的出价,将收敛到最大化总效用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incentivized optimal advert assignment via utility decomposition
We consider a large-scale Ad-auction where adverts are assigned over a potentially infinite number of searches. We capture the intrinsic asymmetries in information between advertisers, the advert platform and the space of searches: advertisers know and can optimize the average performance of their advertisement campaign; the platform knows and can optimize on each search instance; and, neither party knows the distribution of the infinite number of searches that can occur. We look at maximizing the aggregate utility of the click-through rates of advertisers subject to the matching constraints of online ad allocation. We show that this optimization can be decomposed into subproblems, which occur on timescales relevant to the platform or the advertisers respectively. The interpretation of the subproblems is that advertisers choose prices which are optimal given the average click-through rate they receive, that the platform allocates adverts according to a classical assignment problem per search impression and that prices satisfy a nominal complementary slackness condition. We then place this optimization result in a game-theoretic framework by assuming that advertisers bid strategically to maximize their net benefit. In this setting, we construct a mechanism with a unique Nash equilibrium that achieves the decomposition just described, and thus maximizes aggregate utility. This simple and implementable mechanism is as follows. When a search occurs, the platform allocates advertisement slots in order to maximize the expected bid from a click-throughs - this is a classical assignment problem. If an advert receives a click, the platform then solves the assignment problem a second time with the advertiser's bid replaced by a bid which is uniformly distributed between zero and the original bid. The advertiser is then charged their bid minus a rebate. The rebate is the product of the advertiser's bid and ratio of the advertiser's click-through rate in the second assignment calculation (after a click-through) to the first assignment click-through rate (before the click-through). We demonstrate that, under the assignment and pricing mechanism just described, advertisers bidding strategically will maximize aggregate utility. The novelty of the mechanism just described is that, while maximizing utilitarian objective, it can be implemented by the platform in a strategic environment on the time-scales relevant to the platform (per-impression) and advertiser (on-average) respectively, and neither party requires information on the distribution of searches. We also show that dynamic models, where advertisers adapt their bids smoothly over time, will converge to the solution that maximizes aggregate utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信