用Tarantola方法确定有限维正演高斯概率密度的方法

C. Clutz, A. Maniatty
{"title":"用Tarantola方法确定有限维正演高斯概率密度的方法","authors":"C. Clutz, A. Maniatty","doi":"10.1115/imece1998-0218","DOIUrl":null,"url":null,"abstract":"\n The inverse problem of recovering an unknown boundary function given some information about the (interior) solution is considered. It is assumed that the forward problem is governed by a linear partial differential equation (PDE) and that homogeneous boundary conditions exist on the rest of the boundary. A method developed by Tarantola (Tar87) is used which is based upon statistical inference on finite dimensional random vectors. Within this framework, a method for constructing Gaussian probability density functions which model the forward problem is proposed.","PeriodicalId":331326,"journal":{"name":"Computational Methods for Solution of Inverse Problems in Mechanics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Defining Gaussian Probability Densities for Forward Modeling in Finite Dimensions Using the Method of Tarantola\",\"authors\":\"C. Clutz, A. Maniatty\",\"doi\":\"10.1115/imece1998-0218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The inverse problem of recovering an unknown boundary function given some information about the (interior) solution is considered. It is assumed that the forward problem is governed by a linear partial differential equation (PDE) and that homogeneous boundary conditions exist on the rest of the boundary. A method developed by Tarantola (Tar87) is used which is based upon statistical inference on finite dimensional random vectors. Within this framework, a method for constructing Gaussian probability density functions which model the forward problem is proposed.\",\"PeriodicalId\":331326,\"journal\":{\"name\":\"Computational Methods for Solution of Inverse Problems in Mechanics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Solution of Inverse Problems in Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1998-0218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Solution of Inverse Problems in Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1998-0218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑给定(内部)解的一些信息,恢复未知边界函数的反问题。假设正演问题是由线性偏微分方程控制的,并且在边界的其余部分存在齐次边界条件。本文采用了Tarantola (Tar87)提出的基于有限维随机向量的统计推断的方法。在此框架下,提出了一种构造高斯概率密度函数的方法来模拟正演问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method for Defining Gaussian Probability Densities for Forward Modeling in Finite Dimensions Using the Method of Tarantola
The inverse problem of recovering an unknown boundary function given some information about the (interior) solution is considered. It is assumed that the forward problem is governed by a linear partial differential equation (PDE) and that homogeneous boundary conditions exist on the rest of the boundary. A method developed by Tarantola (Tar87) is used which is based upon statistical inference on finite dimensional random vectors. Within this framework, a method for constructing Gaussian probability density functions which model the forward problem is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信