{"title":"光纤中非线性脉冲传播理论研究进展","authors":"S. Amiranashvili, U. Bandelow, N. Akhmediev","doi":"10.1109/NUSOD.2014.6935391","DOIUrl":null,"url":null,"abstract":"We review recent achievements in theory of ultra-short optical pulses propagating in nonlinear fibers. The following problem is especially emphasized: what is the shortest duration (the highest peak power) of an optical soliton and which physical phenomenon is responsible for breakdown of too short pulses. We argue that there is an universal mechanism that destroys sub-cycle solitons even for the most favorable dispersion profile.","PeriodicalId":114800,"journal":{"name":"Numerical Simulation of Optoelectronic Devices, 2014","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent progress in theory of nonlinear pulse propagation in optical fibers\",\"authors\":\"S. Amiranashvili, U. Bandelow, N. Akhmediev\",\"doi\":\"10.1109/NUSOD.2014.6935391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review recent achievements in theory of ultra-short optical pulses propagating in nonlinear fibers. The following problem is especially emphasized: what is the shortest duration (the highest peak power) of an optical soliton and which physical phenomenon is responsible for breakdown of too short pulses. We argue that there is an universal mechanism that destroys sub-cycle solitons even for the most favorable dispersion profile.\",\"PeriodicalId\":114800,\"journal\":{\"name\":\"Numerical Simulation of Optoelectronic Devices, 2014\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Simulation of Optoelectronic Devices, 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2014.6935391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Simulation of Optoelectronic Devices, 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2014.6935391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent progress in theory of nonlinear pulse propagation in optical fibers
We review recent achievements in theory of ultra-short optical pulses propagating in nonlinear fibers. The following problem is especially emphasized: what is the shortest duration (the highest peak power) of an optical soliton and which physical phenomenon is responsible for breakdown of too short pulses. We argue that there is an universal mechanism that destroys sub-cycle solitons even for the most favorable dispersion profile.