Nash-Riccati方程稳定解的计算

I. Ivanov, I. G. Ivanov
{"title":"Nash-Riccati方程稳定解的计算","authors":"I. Ivanov, I. G. Ivanov","doi":"10.52866/ijcsm.2023.02.02.014","DOIUrl":null,"url":null,"abstract":"Consider an iterative modification of the linearized Newton method for computing the minimal nonnegative solution of a\na nonsymmetric Nash-Riccati equation. The equation has arisen in linear quadratic\ngames for positive systems. The Newton procedure for computing the minimal nonnegative solution is well known in the\nthe literature. Our proposal is effective one because it employs small number of matrix multiplication at each iteration step and there is a variant to exploit the block structure of matrix coefficients of the Nash-Riccati equation. Moreover, in this reason, it is easy to extend the proposed iterative modification depending on the number of players of a given game model. We provide a numerical example where compare the results from experiment with the proposed iteration an the linearized Newton method.","PeriodicalId":158721,"journal":{"name":"Iraqi Journal for Computer Science and Mathematics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of the Stabilizing Solution of Nash-Riccati Equations\",\"authors\":\"I. Ivanov, I. G. Ivanov\",\"doi\":\"10.52866/ijcsm.2023.02.02.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider an iterative modification of the linearized Newton method for computing the minimal nonnegative solution of a\\na nonsymmetric Nash-Riccati equation. The equation has arisen in linear quadratic\\ngames for positive systems. The Newton procedure for computing the minimal nonnegative solution is well known in the\\nthe literature. Our proposal is effective one because it employs small number of matrix multiplication at each iteration step and there is a variant to exploit the block structure of matrix coefficients of the Nash-Riccati equation. Moreover, in this reason, it is easy to extend the proposed iterative modification depending on the number of players of a given game model. We provide a numerical example where compare the results from experiment with the proposed iteration an the linearized Newton method.\",\"PeriodicalId\":158721,\"journal\":{\"name\":\"Iraqi Journal for Computer Science and Mathematics\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal for Computer Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52866/ijcsm.2023.02.02.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal for Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52866/ijcsm.2023.02.02.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑计算非对称Nash-Riccati方程最小非负解的线性化牛顿法的迭代改进。该方程出现在正系统的线性二次对策中。计算最小非负解的牛顿过程在文献中是众所周知的。该方法利用了纳什-里卡蒂方程矩阵系数的块结构,并且在每个迭代步骤中使用了少量的矩阵乘法,是一种有效的方法。此外,由于这个原因,很容易根据给定博弈模型的玩家数量扩展所提出的迭代修改。最后给出了一个数值算例,将所提出的迭代方法与线性化牛顿法的实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of the Stabilizing Solution of Nash-Riccati Equations
Consider an iterative modification of the linearized Newton method for computing the minimal nonnegative solution of a a nonsymmetric Nash-Riccati equation. The equation has arisen in linear quadratic games for positive systems. The Newton procedure for computing the minimal nonnegative solution is well known in the the literature. Our proposal is effective one because it employs small number of matrix multiplication at each iteration step and there is a variant to exploit the block structure of matrix coefficients of the Nash-Riccati equation. Moreover, in this reason, it is easy to extend the proposed iterative modification depending on the number of players of a given game model. We provide a numerical example where compare the results from experiment with the proposed iteration an the linearized Newton method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信