{"title":"在树状网格网络中求解一些具有最优或接近最优加速的图问题","authors":"Ming-Deh A. Huang","doi":"10.1109/SFCS.1985.52","DOIUrl":null,"url":null,"abstract":"We present a systematic approach for solving graph problems under the network models. We illustrate this approach on the mesh-of-trees networks. It is known that under the CREW PRAM model, when a undirected graph of n nodes is given by an n by n adjacency matrix, the problems of finding minimum spanning forest, connected components, and biconnected components can all be solved with optimal speedup when the number of processors p ≤ n2/log2n. We show that for these problems, the same optimal speedup can be achieved even under the much more restrictive mesh-of-trees network. We also show that for the problem of finding directed spanning forest of arbitrary digraphs and the problem of testing strong connectivity of 1-reachable digraphs, near-optimal speedup can be achieved.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Solving some graph problems with optimal or near-optimal speedup on mesh-of-trees networks\",\"authors\":\"Ming-Deh A. Huang\",\"doi\":\"10.1109/SFCS.1985.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a systematic approach for solving graph problems under the network models. We illustrate this approach on the mesh-of-trees networks. It is known that under the CREW PRAM model, when a undirected graph of n nodes is given by an n by n adjacency matrix, the problems of finding minimum spanning forest, connected components, and biconnected components can all be solved with optimal speedup when the number of processors p ≤ n2/log2n. We show that for these problems, the same optimal speedup can be achieved even under the much more restrictive mesh-of-trees network. We also show that for the problem of finding directed spanning forest of arbitrary digraphs and the problem of testing strong connectivity of 1-reachable digraphs, near-optimal speedup can be achieved.\",\"PeriodicalId\":296739,\"journal\":{\"name\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1985.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving some graph problems with optimal or near-optimal speedup on mesh-of-trees networks
We present a systematic approach for solving graph problems under the network models. We illustrate this approach on the mesh-of-trees networks. It is known that under the CREW PRAM model, when a undirected graph of n nodes is given by an n by n adjacency matrix, the problems of finding minimum spanning forest, connected components, and biconnected components can all be solved with optimal speedup when the number of processors p ≤ n2/log2n. We show that for these problems, the same optimal speedup can be achieved even under the much more restrictive mesh-of-trees network. We also show that for the problem of finding directed spanning forest of arbitrary digraphs and the problem of testing strong connectivity of 1-reachable digraphs, near-optimal speedup can be achieved.