高频横向振荡在日冕加热中的作用

Daye Lim, T. Van Doorsselaere, D. Berghmans, R. Morton, V. Pant, S. Mandal
{"title":"高频横向振荡在日冕加热中的作用","authors":"Daye Lim, T. Van Doorsselaere, D. Berghmans, R. Morton, V. Pant, S. Mandal","doi":"10.3847/2041-8213/ace423","DOIUrl":null,"url":null,"abstract":"Transverse oscillations that do not show significant damping in solar coronal loops are found to be ubiquitous. Recently, the discovery of high-frequency transverse oscillations in small-scale loops has been accelerated by the Extreme Ultraviolet Imager on board Solar Orbiter. We perform a meta-analysis by considering the oscillation parameters reported in the literature. Motivated by the power law of the velocity power spectrum of propagating transverse waves detected with CoMP, we consider the distribution of energy fluxes as a function of oscillation frequencies and the distribution of the number of oscillations as a function of energy fluxes and energies. These distributions are described as a power law. We propose that the power-law slope (δ = −1.40) of energy fluxes depending on frequencies could be used for determining whether high-frequency oscillations dominate the total heating (δ < 1) or not (δ > 1). In addition, we found that the oscillation number distribution depending on energy fluxes has a power-law slope of α = 1.00, being less than 2, which means that oscillations with high energy fluxes provide the dominant contribution to the total heating. It is shown that, on average, higher energy fluxes are generated from higher-frequency oscillations. The total energy generated by transverse oscillations ranges from about 1020 to 1025 erg, corresponding to the energies for nanoflare (1024–1027 erg), picoflare (1021–1024 erg), and femtoflare (1018–1021 erg). The respective slope results imply that high-frequency oscillations could provide the dominant contribution to total coronal heating generated by decayless transverse oscillations.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of High-frequency Transverse Oscillations in Coronal Heating\",\"authors\":\"Daye Lim, T. Van Doorsselaere, D. Berghmans, R. Morton, V. Pant, S. Mandal\",\"doi\":\"10.3847/2041-8213/ace423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transverse oscillations that do not show significant damping in solar coronal loops are found to be ubiquitous. Recently, the discovery of high-frequency transverse oscillations in small-scale loops has been accelerated by the Extreme Ultraviolet Imager on board Solar Orbiter. We perform a meta-analysis by considering the oscillation parameters reported in the literature. Motivated by the power law of the velocity power spectrum of propagating transverse waves detected with CoMP, we consider the distribution of energy fluxes as a function of oscillation frequencies and the distribution of the number of oscillations as a function of energy fluxes and energies. These distributions are described as a power law. We propose that the power-law slope (δ = −1.40) of energy fluxes depending on frequencies could be used for determining whether high-frequency oscillations dominate the total heating (δ < 1) or not (δ > 1). In addition, we found that the oscillation number distribution depending on energy fluxes has a power-law slope of α = 1.00, being less than 2, which means that oscillations with high energy fluxes provide the dominant contribution to the total heating. It is shown that, on average, higher energy fluxes are generated from higher-frequency oscillations. The total energy generated by transverse oscillations ranges from about 1020 to 1025 erg, corresponding to the energies for nanoflare (1024–1027 erg), picoflare (1021–1024 erg), and femtoflare (1018–1021 erg). The respective slope results imply that high-frequency oscillations could provide the dominant contribution to total coronal heating generated by decayless transverse oscillations.\",\"PeriodicalId\":179976,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ace423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ace423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在日冕环中没有明显阻尼的横向振荡被发现是普遍存在的。最近,太阳轨道飞行器上的极紫外成像仪加速了小尺度环路高频横向振荡的发现。我们通过考虑文献中报道的振荡参数进行了荟萃分析。基于CoMP检测的传播横波速度功率谱的幂律,我们考虑能量通量的分布是振荡频率的函数,振荡次数的分布是能量通量和能量的函数。这些分布被描述为幂律。我们提出能量通量随频率变化的幂律斜率(δ = - 1.40)可用于确定高频振荡是否主导总发热(δ < 1)或不主导总发热(δ > 1)。此外,我们发现振荡数分布随能量通量变化的幂律斜率α = 1.00,小于2,这意味着具有高能量通量的振荡对总发热的贡献占主导地位。结果表明,平均而言,高频振荡产生较高的能量通量。横向振荡产生的总能量约为1020至1025 erg,对应于纳米耀斑(1024-1027 erg)、皮耀斑(1021-1024 erg)和飞耀斑(1018-1021 erg)的能量。各自的斜率结果表明,高频振荡可能是由无衰减横向振荡产生的总日冕加热的主要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role of High-frequency Transverse Oscillations in Coronal Heating
Transverse oscillations that do not show significant damping in solar coronal loops are found to be ubiquitous. Recently, the discovery of high-frequency transverse oscillations in small-scale loops has been accelerated by the Extreme Ultraviolet Imager on board Solar Orbiter. We perform a meta-analysis by considering the oscillation parameters reported in the literature. Motivated by the power law of the velocity power spectrum of propagating transverse waves detected with CoMP, we consider the distribution of energy fluxes as a function of oscillation frequencies and the distribution of the number of oscillations as a function of energy fluxes and energies. These distributions are described as a power law. We propose that the power-law slope (δ = −1.40) of energy fluxes depending on frequencies could be used for determining whether high-frequency oscillations dominate the total heating (δ < 1) or not (δ > 1). In addition, we found that the oscillation number distribution depending on energy fluxes has a power-law slope of α = 1.00, being less than 2, which means that oscillations with high energy fluxes provide the dominant contribution to the total heating. It is shown that, on average, higher energy fluxes are generated from higher-frequency oscillations. The total energy generated by transverse oscillations ranges from about 1020 to 1025 erg, corresponding to the energies for nanoflare (1024–1027 erg), picoflare (1021–1024 erg), and femtoflare (1018–1021 erg). The respective slope results imply that high-frequency oscillations could provide the dominant contribution to total coronal heating generated by decayless transverse oscillations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信