细胞纤维扫描图像的多类细胞器自动分割

C. Meyer, V. Mallouh, D. Spehner, É. Baudrier, P. Schultz, B. Naegel
{"title":"细胞纤维扫描图像的多类细胞器自动分割","authors":"C. Meyer, V. Mallouh, D. Spehner, É. Baudrier, P. Schultz, B. Naegel","doi":"10.1109/ISBI48211.2021.9434075","DOIUrl":null,"url":null,"abstract":"Focused Ion Beam milling combined with Scanning Electron Microscopy (FIB-SEM) technique is an electron microscopy imaging method that offers the possibility of acquiring 3D isotropic images of biological structures at the nanometric scale. Automated image segmentation is required for morphological analysis of huge image stacks and to save time consuming manual intervention. Current methods are either specific to data and organelles or lack accuracy. We propose a robust multi-class semantic segmentation method for FIBSEM images, based on deep neural networks. We evaluate and compare our proposed method on two FIB-SEM images, for the segmentation of mitochondria, cell membrane and endoplasmic reticulum. We achieve results close to inter-expert variability.","PeriodicalId":372939,"journal":{"name":"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic Multi Class Organelle Segmentation For Cellular Fib-Sem Images\",\"authors\":\"C. Meyer, V. Mallouh, D. Spehner, É. Baudrier, P. Schultz, B. Naegel\",\"doi\":\"10.1109/ISBI48211.2021.9434075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Focused Ion Beam milling combined with Scanning Electron Microscopy (FIB-SEM) technique is an electron microscopy imaging method that offers the possibility of acquiring 3D isotropic images of biological structures at the nanometric scale. Automated image segmentation is required for morphological analysis of huge image stacks and to save time consuming manual intervention. Current methods are either specific to data and organelles or lack accuracy. We propose a robust multi-class semantic segmentation method for FIBSEM images, based on deep neural networks. We evaluate and compare our proposed method on two FIB-SEM images, for the segmentation of mitochondria, cell membrane and endoplasmic reticulum. We achieve results close to inter-expert variability.\",\"PeriodicalId\":372939,\"journal\":{\"name\":\"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI48211.2021.9434075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI48211.2021.9434075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

聚焦离子束铣削结合扫描电子显微镜(FIB-SEM)技术是一种电子显微镜成像方法,提供了在纳米尺度上获得生物结构三维各向同性图像的可能性。为了对海量图像进行形态分析和节省人工干预的时间,需要自动图像分割。目前的方法要么是特定于数据和细胞器,要么缺乏准确性。提出了一种基于深度神经网络的FIBSEM图像鲁棒多类语义分割方法。我们在两个FIB-SEM图像上评估和比较了我们提出的方法,用于线粒体、细胞膜和内质网的分割。我们得到的结果接近于专家间的可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Multi Class Organelle Segmentation For Cellular Fib-Sem Images
Focused Ion Beam milling combined with Scanning Electron Microscopy (FIB-SEM) technique is an electron microscopy imaging method that offers the possibility of acquiring 3D isotropic images of biological structures at the nanometric scale. Automated image segmentation is required for morphological analysis of huge image stacks and to save time consuming manual intervention. Current methods are either specific to data and organelles or lack accuracy. We propose a robust multi-class semantic segmentation method for FIBSEM images, based on deep neural networks. We evaluate and compare our proposed method on two FIB-SEM images, for the segmentation of mitochondria, cell membrane and endoplasmic reticulum. We achieve results close to inter-expert variability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信