具有拒绝选项的高效最小学习机

A. C. D. Oliveira, J. Gomes, A. Neto, A. Souza
{"title":"具有拒绝选项的高效最小学习机","authors":"A. C. D. Oliveira, J. Gomes, A. Neto, A. Souza","doi":"10.1109/BRACIS.2016.078","DOIUrl":null,"url":null,"abstract":"Reject option is a widely used technique to improve the reliability of classification algorithms. It consists on withholding the classification of an instance if the classification is not reliable enough. Variants of well known classification algorithms have been proposed on the past years with diverse applications. In this work, we propose two variants of the Nearest Neighbor Minimal Learning Machine (NN-MLM) with reject option. The NN-MLM is an computationally efficient version of the recently proposed supervised learning algorithm called Minimal Learning Machine (MLM). The two variants (rejoNN-MLM and rejoNNwMLM) are evaluated on real world datasets and compared to state-of-the-art classifiers with reject option. Result show that both methods are a valid alternative for problems that require a reject option.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient Minimal Learning Machines with Reject Option\",\"authors\":\"A. C. D. Oliveira, J. Gomes, A. Neto, A. Souza\",\"doi\":\"10.1109/BRACIS.2016.078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reject option is a widely used technique to improve the reliability of classification algorithms. It consists on withholding the classification of an instance if the classification is not reliable enough. Variants of well known classification algorithms have been proposed on the past years with diverse applications. In this work, we propose two variants of the Nearest Neighbor Minimal Learning Machine (NN-MLM) with reject option. The NN-MLM is an computationally efficient version of the recently proposed supervised learning algorithm called Minimal Learning Machine (MLM). The two variants (rejoNN-MLM and rejoNNwMLM) are evaluated on real world datasets and compared to state-of-the-art classifiers with reject option. Result show that both methods are a valid alternative for problems that require a reject option.\",\"PeriodicalId\":183149,\"journal\":{\"name\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2016.078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

拒绝选项是一种广泛使用的技术,以提高分类算法的可靠性。如果分类不够可靠,则保留对实例的分类。在过去的几年中,已经提出了各种已知分类算法的变体,并具有不同的应用。在这项工作中,我们提出了两个具有拒绝选项的最近邻最小学习机(NN-MLM)的变体。NN-MLM是最近提出的被称为最小学习机(MLM)的监督学习算法的计算效率高的版本。这两个变体(rejoNN-MLM和rejoNNwMLM)在真实世界的数据集上进行了评估,并与具有拒绝选项的最先进的分类器进行了比较。结果表明,对于需要拒绝选项的问题,这两种方法都是有效的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Minimal Learning Machines with Reject Option
Reject option is a widely used technique to improve the reliability of classification algorithms. It consists on withholding the classification of an instance if the classification is not reliable enough. Variants of well known classification algorithms have been proposed on the past years with diverse applications. In this work, we propose two variants of the Nearest Neighbor Minimal Learning Machine (NN-MLM) with reject option. The NN-MLM is an computationally efficient version of the recently proposed supervised learning algorithm called Minimal Learning Machine (MLM). The two variants (rejoNN-MLM and rejoNNwMLM) are evaluated on real world datasets and compared to state-of-the-art classifiers with reject option. Result show that both methods are a valid alternative for problems that require a reject option.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信