空间大点数据聚合与可视化的线性时间算法

Christian Beilschmidt, T. Fober, Michael Mattig, B. Seeger
{"title":"空间大点数据聚合与可视化的线性时间算法","authors":"Christian Beilschmidt, T. Fober, Michael Mattig, B. Seeger","doi":"10.1145/3139958.3140037","DOIUrl":null,"url":null,"abstract":"The visualization of spatial data becomes increasingly important in science, business and many other domains. In geography, data often corresponds to a large number of point observations that should be displayed on a constrained screen with limited resolution. This causes, however, a loss of information due to an overloaded and occluded visualization. In this paper we present a new visualization algorithm that avoids this problem by aggregating point data into a set of non-overlapping circles that capture all important information. Our algorithm based on a quadtree computes the circles in linear time with respect to the number of points.","PeriodicalId":270649,"journal":{"name":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Linear-Time Algorithm for the Aggregation and Visualization of Big Spatial Point Data\",\"authors\":\"Christian Beilschmidt, T. Fober, Michael Mattig, B. Seeger\",\"doi\":\"10.1145/3139958.3140037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The visualization of spatial data becomes increasingly important in science, business and many other domains. In geography, data often corresponds to a large number of point observations that should be displayed on a constrained screen with limited resolution. This causes, however, a loss of information due to an overloaded and occluded visualization. In this paper we present a new visualization algorithm that avoids this problem by aggregating point data into a set of non-overlapping circles that capture all important information. Our algorithm based on a quadtree computes the circles in linear time with respect to the number of points.\",\"PeriodicalId\":270649,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139958.3140037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139958.3140037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

空间数据的可视化在科学、商业和许多其他领域变得越来越重要。在地理学中,数据通常对应于大量的点观测,这些点观测应该以有限的分辨率显示在受限的屏幕上。然而,这将导致信息的丢失,这是由于一个过载和闭塞的可视化。在本文中,我们提出了一种新的可视化算法,通过将点数据聚合到一组不重叠的圆中来捕获所有重要信息,从而避免了这个问题。我们基于四叉树的算法根据点的数量在线性时间内计算圆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Linear-Time Algorithm for the Aggregation and Visualization of Big Spatial Point Data
The visualization of spatial data becomes increasingly important in science, business and many other domains. In geography, data often corresponds to a large number of point observations that should be displayed on a constrained screen with limited resolution. This causes, however, a loss of information due to an overloaded and occluded visualization. In this paper we present a new visualization algorithm that avoids this problem by aggregating point data into a set of non-overlapping circles that capture all important information. Our algorithm based on a quadtree computes the circles in linear time with respect to the number of points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信