基于FIS的股票市场预测

T. Chandrasegar, Mehul Kumar Piruka
{"title":"基于FIS的股票市场预测","authors":"T. Chandrasegar, Mehul Kumar Piruka","doi":"10.1109/i-PACT44901.2019.8960107","DOIUrl":null,"url":null,"abstract":"Stock price forecasting is a prevalent and critical subject in financial and academic studies. The objective of this paper is to forecast today’s high price in the market from open of today, open from yesterday and closing of yesterday. We are using the real dataset from NSE NIFTY. We will be implementing a fuzzy intuition system such as Mamdani, Sugeno, and machine learning algorithms like CNN and LSTM. Cost optimization would be used for Sugeno. This paper would compare and improvise the algorithm which will show a higher prediction accuracy rate and would be proved statistically.","PeriodicalId":214890,"journal":{"name":"2019 Innovations in Power and Advanced Computing Technologies (i-PACT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Share Market using FIS\",\"authors\":\"T. Chandrasegar, Mehul Kumar Piruka\",\"doi\":\"10.1109/i-PACT44901.2019.8960107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock price forecasting is a prevalent and critical subject in financial and academic studies. The objective of this paper is to forecast today’s high price in the market from open of today, open from yesterday and closing of yesterday. We are using the real dataset from NSE NIFTY. We will be implementing a fuzzy intuition system such as Mamdani, Sugeno, and machine learning algorithms like CNN and LSTM. Cost optimization would be used for Sugeno. This paper would compare and improvise the algorithm which will show a higher prediction accuracy rate and would be proved statistically.\",\"PeriodicalId\":214890,\"journal\":{\"name\":\"2019 Innovations in Power and Advanced Computing Technologies (i-PACT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Innovations in Power and Advanced Computing Technologies (i-PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/i-PACT44901.2019.8960107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Innovations in Power and Advanced Computing Technologies (i-PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/i-PACT44901.2019.8960107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

股票价格预测是金融和学术研究中一个普遍而重要的课题。本文的目的是从今天开盘、昨天开盘和昨天收盘预测今天市场的高价位。我们使用来自NSE NIFTY的真实数据集。我们将实现模糊直觉系统,如Mamdani, Sugeno,以及机器学习算法,如CNN和LSTM。成本优化将用于Sugeno。本文将对不同的算法进行比较和改进,得出较高的预测准确率,并进行统计验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Share Market using FIS
Stock price forecasting is a prevalent and critical subject in financial and academic studies. The objective of this paper is to forecast today’s high price in the market from open of today, open from yesterday and closing of yesterday. We are using the real dataset from NSE NIFTY. We will be implementing a fuzzy intuition system such as Mamdani, Sugeno, and machine learning algorithms like CNN and LSTM. Cost optimization would be used for Sugeno. This paper would compare and improvise the algorithm which will show a higher prediction accuracy rate and would be proved statistically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信