{"title":"卡带类次调和函数狄利克雷积分的恒等式","authors":"P. Kargaev, K. Evgeny","doi":"10.1080/02781070412331328585","DOIUrl":null,"url":null,"abstract":"Let a real function v be subharmonic in the plane and harmonic outside and . Assume that v belongs to the so-called subharmonic counterpart of the Cartright class of the entire functions. For such a function we obtain identities and estimates in terms of the Dirichlet integral.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identities for the dirichlet integral of subharmonic functions from the cartright class\",\"authors\":\"P. Kargaev, K. Evgeny\",\"doi\":\"10.1080/02781070412331328585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let a real function v be subharmonic in the plane and harmonic outside and . Assume that v belongs to the so-called subharmonic counterpart of the Cartright class of the entire functions. For such a function we obtain identities and estimates in terms of the Dirichlet integral.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070412331328585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070412331328585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identities for the dirichlet integral of subharmonic functions from the cartright class
Let a real function v be subharmonic in the plane and harmonic outside and . Assume that v belongs to the so-called subharmonic counterpart of the Cartright class of the entire functions. For such a function we obtain identities and estimates in terms of the Dirichlet integral.