使用KNet深度学习框架自动分割腺体以促进CD138整张幻灯片图像的定量分析

Shun Zou, Feifan Liao
{"title":"使用KNet深度学习框架自动分割腺体以促进CD138整张幻灯片图像的定量分析","authors":"Shun Zou, Feifan Liao","doi":"10.1109/FAIML57028.2022.00044","DOIUrl":null,"url":null,"abstract":"Segmentation of glands in immunohistochemical (IHC) images is the top priority for automated evaluation of CD138 positive cells, which could exclude irrelevant regions and improve accuracy and effectiveness. In this paper we propose a novel patch-based pipeline with an integrated KNet-like deep learning framework to perform automated gland segmentation for CD138 whole slide images. The patch-based pipeline is composed of patch decomposition, tissue patch extraction, gland segmentation, patch merging, and gland mask padding. The KNet deep learning framework introduces SwinTransformer to extract multiscale patch features, and integrate Uper Net as basic semantic kernels into KNet framework to refine the gland segmentation results. The integrated framework is trained in an end-to-end way with a weighted cross-entropy loss and dice loss. The experimental results show that our proposed framework achieves state-of-the-art performance, and could produce accurate gland masks for real whole slide images, which lays a solid foundation for automated quantitative analysis of CD138 images.","PeriodicalId":307172,"journal":{"name":"2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated segmentation of glands to facilitate quantitative analysis in CD138 whole slide images using a KNet deep learning framework\",\"authors\":\"Shun Zou, Feifan Liao\",\"doi\":\"10.1109/FAIML57028.2022.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation of glands in immunohistochemical (IHC) images is the top priority for automated evaluation of CD138 positive cells, which could exclude irrelevant regions and improve accuracy and effectiveness. In this paper we propose a novel patch-based pipeline with an integrated KNet-like deep learning framework to perform automated gland segmentation for CD138 whole slide images. The patch-based pipeline is composed of patch decomposition, tissue patch extraction, gland segmentation, patch merging, and gland mask padding. The KNet deep learning framework introduces SwinTransformer to extract multiscale patch features, and integrate Uper Net as basic semantic kernels into KNet framework to refine the gland segmentation results. The integrated framework is trained in an end-to-end way with a weighted cross-entropy loss and dice loss. The experimental results show that our proposed framework achieves state-of-the-art performance, and could produce accurate gland masks for real whole slide images, which lays a solid foundation for automated quantitative analysis of CD138 images.\",\"PeriodicalId\":307172,\"journal\":{\"name\":\"2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FAIML57028.2022.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAIML57028.2022.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

免疫组织化学(IHC)图像中腺体的分割是CD138阳性细胞自动评估的重中之重,它可以排除不相关的区域,提高准确性和有效性。在本文中,我们提出了一种新的基于补丁的管道,该管道集成了类似knet的深度学习框架,用于对CD138整张幻灯片图像进行自动腺体分割。基于patch的管道包括patch分解、组织patch提取、gland分割、patch合并和gland mask填充。KNet深度学习框架引入SwinTransformer提取多尺度patch特征,并将upper Net作为基本语义内核集成到KNet框架中,对gland分割结果进行细化。采用加权交叉熵损失和骰子损失对集成框架进行端到端训练。实验结果表明,我们提出的框架达到了最先进的性能,可以为真实的全幻灯片图像生成准确的腺体掩模,为CD138图像的自动化定量分析奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated segmentation of glands to facilitate quantitative analysis in CD138 whole slide images using a KNet deep learning framework
Segmentation of glands in immunohistochemical (IHC) images is the top priority for automated evaluation of CD138 positive cells, which could exclude irrelevant regions and improve accuracy and effectiveness. In this paper we propose a novel patch-based pipeline with an integrated KNet-like deep learning framework to perform automated gland segmentation for CD138 whole slide images. The patch-based pipeline is composed of patch decomposition, tissue patch extraction, gland segmentation, patch merging, and gland mask padding. The KNet deep learning framework introduces SwinTransformer to extract multiscale patch features, and integrate Uper Net as basic semantic kernels into KNet framework to refine the gland segmentation results. The integrated framework is trained in an end-to-end way with a weighted cross-entropy loss and dice loss. The experimental results show that our proposed framework achieves state-of-the-art performance, and could produce accurate gland masks for real whole slide images, which lays a solid foundation for automated quantitative analysis of CD138 images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信