Wenjie Fu, Leilei Jin, Ming Ling, Yu Zheng, Longxing Shi
{"title":"宽电压标度的跨层功率和时序评估方法","authors":"Wenjie Fu, Leilei Jin, Ming Ling, Yu Zheng, Longxing Shi","doi":"10.1109/DAC18072.2020.9218682","DOIUrl":null,"url":null,"abstract":"Wide supply voltage scaling is critical to enable worthwhile dynamic adjustment of the processor efficiency against varying workloads. In this paper, a cross-layer power and timing evaluation method is proposed to estimate the processor energy efficiency using both circuit and architectural information in a wide voltage range. The process variations are considered through statistical static timing analysis while the voltage effect is modeled through secondary iterated fittings. The error for estimating processor energy efficiency decreases to 8.29% when the supply voltage is scaled from 1.1V to 0.6V, while traditional architectural evaluations behave more than 40% errors.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Cross-Layer Power and Timing Evaluation Method for Wide Voltage Scaling\",\"authors\":\"Wenjie Fu, Leilei Jin, Ming Ling, Yu Zheng, Longxing Shi\",\"doi\":\"10.1109/DAC18072.2020.9218682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wide supply voltage scaling is critical to enable worthwhile dynamic adjustment of the processor efficiency against varying workloads. In this paper, a cross-layer power and timing evaluation method is proposed to estimate the processor energy efficiency using both circuit and architectural information in a wide voltage range. The process variations are considered through statistical static timing analysis while the voltage effect is modeled through secondary iterated fittings. The error for estimating processor energy efficiency decreases to 8.29% when the supply voltage is scaled from 1.1V to 0.6V, while traditional architectural evaluations behave more than 40% errors.\",\"PeriodicalId\":428807,\"journal\":{\"name\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC18072.2020.9218682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Cross-Layer Power and Timing Evaluation Method for Wide Voltage Scaling
Wide supply voltage scaling is critical to enable worthwhile dynamic adjustment of the processor efficiency against varying workloads. In this paper, a cross-layer power and timing evaluation method is proposed to estimate the processor energy efficiency using both circuit and architectural information in a wide voltage range. The process variations are considered through statistical static timing analysis while the voltage effect is modeled through secondary iterated fittings. The error for estimating processor energy efficiency decreases to 8.29% when the supply voltage is scaled from 1.1V to 0.6V, while traditional architectural evaluations behave more than 40% errors.