{"title":"非定常蒸发气溶胶液滴半径变化率的初始和有限极限表达式","authors":"E. Korneeva, M. Kuzmin","doi":"10.18384/2310-7251-2018-4-167-177","DOIUrl":null,"url":null,"abstract":"Annotation. We have found initial and finite limit expressions for the rate of change in the radius of an unsteady evaporating aerosol droplet. The equations take into account the curvature of the droplet surface, surface tension and specific heat of the phase transition, as well as concentration and temperature jumps. Numerical calculations for all values contained in the derived expressions for water droplets of different sizes and at different ambient temperatures are carried out. The similarities and differences of these expressions are revealed, which are important to consider when choosing formulae for calculating the time of complete evaporation of droplets.","PeriodicalId":218763,"journal":{"name":"Bulletin of the Moscow State Regional University","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INITIAL AND FINITE LIMIT EXPRESSION FOR THE RATE OF CHANGE IN THE RADIUS OF AN UNSTEADY EVAPORATING AEROSOL DROPLET\",\"authors\":\"E. Korneeva, M. Kuzmin\",\"doi\":\"10.18384/2310-7251-2018-4-167-177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Annotation. We have found initial and finite limit expressions for the rate of change in the radius of an unsteady evaporating aerosol droplet. The equations take into account the curvature of the droplet surface, surface tension and specific heat of the phase transition, as well as concentration and temperature jumps. Numerical calculations for all values contained in the derived expressions for water droplets of different sizes and at different ambient temperatures are carried out. The similarities and differences of these expressions are revealed, which are important to consider when choosing formulae for calculating the time of complete evaporation of droplets.\",\"PeriodicalId\":218763,\"journal\":{\"name\":\"Bulletin of the Moscow State Regional University\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Moscow State Regional University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18384/2310-7251-2018-4-167-177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Moscow State Regional University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18384/2310-7251-2018-4-167-177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INITIAL AND FINITE LIMIT EXPRESSION FOR THE RATE OF CHANGE IN THE RADIUS OF AN UNSTEADY EVAPORATING AEROSOL DROPLET
Annotation. We have found initial and finite limit expressions for the rate of change in the radius of an unsteady evaporating aerosol droplet. The equations take into account the curvature of the droplet surface, surface tension and specific heat of the phase transition, as well as concentration and temperature jumps. Numerical calculations for all values contained in the derived expressions for water droplets of different sizes and at different ambient temperatures are carried out. The similarities and differences of these expressions are revealed, which are important to consider when choosing formulae for calculating the time of complete evaporation of droplets.