燃气轮机叶片后缘三层冲击冷却设计

K. Ramakrishnan, Prashant Singh, S. Ekkad
{"title":"燃气轮机叶片后缘三层冲击冷却设计","authors":"K. Ramakrishnan, Prashant Singh, S. Ekkad","doi":"10.1115/IMECE2018-86430","DOIUrl":null,"url":null,"abstract":"Gas turbine blades are subjected to elevated heat loads due to highly turbulent hot gases exiting the combustor section. Several internal and external cooling techniques are used to protect the blades from such hostile environment. Trailing edge of a turbine blade is usually cooled with array of staggered cylindrical pins, which connects the pressure and suction side internal walls and hence provide improved structural integrity. However, the heat transfer enhancement levels for array of pin-fins is generally lower than jet impingement and ribbed channels. In this study, we present a three-tier impingement cooling design for blade trailing-edge and part of mid-chord region. In this design, pressure and suction side internal walls are subjected to oblique jet impingement. Three different configurations have been studied where we have systematically varied the jet diameters and number of jets in an array for different tiers. Numerical simulations have been carried out for different flow conditions, which corresponds to Reynolds numbers (based on 1st-passage jet diameter) ranging between 3000 and 46000. First two plenums had high levels of heat transfer due to oblique jet impingement, where the suction side internal wall representative surface, had higher heat transfer compared to the pressure side internal wall. Third tier had the lowest heat transfer due to triangle-like configuration where jets were almost parallel to pressure and suction side surfaces, and hence their effectiveness was lower than the oblique jet impingement in upstream two tiers.","PeriodicalId":307820,"journal":{"name":"Volume 8B: Heat Transfer and Thermal Engineering","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Three-Tier Impingement Cooling Design for Gas Turbine Blade Trailing Edge\",\"authors\":\"K. Ramakrishnan, Prashant Singh, S. Ekkad\",\"doi\":\"10.1115/IMECE2018-86430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gas turbine blades are subjected to elevated heat loads due to highly turbulent hot gases exiting the combustor section. Several internal and external cooling techniques are used to protect the blades from such hostile environment. Trailing edge of a turbine blade is usually cooled with array of staggered cylindrical pins, which connects the pressure and suction side internal walls and hence provide improved structural integrity. However, the heat transfer enhancement levels for array of pin-fins is generally lower than jet impingement and ribbed channels. In this study, we present a three-tier impingement cooling design for blade trailing-edge and part of mid-chord region. In this design, pressure and suction side internal walls are subjected to oblique jet impingement. Three different configurations have been studied where we have systematically varied the jet diameters and number of jets in an array for different tiers. Numerical simulations have been carried out for different flow conditions, which corresponds to Reynolds numbers (based on 1st-passage jet diameter) ranging between 3000 and 46000. First two plenums had high levels of heat transfer due to oblique jet impingement, where the suction side internal wall representative surface, had higher heat transfer compared to the pressure side internal wall. Third tier had the lowest heat transfer due to triangle-like configuration where jets were almost parallel to pressure and suction side surfaces, and hence their effectiveness was lower than the oblique jet impingement in upstream two tiers.\",\"PeriodicalId\":307820,\"journal\":{\"name\":\"Volume 8B: Heat Transfer and Thermal Engineering\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8B: Heat Transfer and Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Heat Transfer and Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

燃气轮机叶片承受高热负荷,由于高紊流热气体离开燃烧室部分。几种内部和外部冷却技术被用来保护叶片免受这种恶劣环境的影响。涡轮叶片后缘通常采用交错圆柱形销钉阵列冷却,连接压力侧和吸力侧内壁,从而提高了结构的完整性。然而,翅片阵列的换热强化水平普遍低于射流冲击和肋形通道。在本研究中,我们提出了一种针对叶片尾缘和部分中弦区的三层碰撞冷却设计。在这种设计中,压力和吸力侧内壁受到斜射流冲击。我们研究了三种不同的结构,系统地改变了不同层阵列中的射流直径和射流数量。在不同的流动条件下进行了数值模拟,对应的雷诺数(基于第一通道射流直径)在3000 ~ 46000之间。由于斜喷流的冲击,前两个全气室的换热水平较高,其中吸力侧内壁代表表面的换热水平高于压力侧内壁。由于第三层的三角形结构,射流几乎平行于压力和吸力面,因此传热最低,因此其效率低于上游两层的斜射流撞击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-Tier Impingement Cooling Design for Gas Turbine Blade Trailing Edge
Gas turbine blades are subjected to elevated heat loads due to highly turbulent hot gases exiting the combustor section. Several internal and external cooling techniques are used to protect the blades from such hostile environment. Trailing edge of a turbine blade is usually cooled with array of staggered cylindrical pins, which connects the pressure and suction side internal walls and hence provide improved structural integrity. However, the heat transfer enhancement levels for array of pin-fins is generally lower than jet impingement and ribbed channels. In this study, we present a three-tier impingement cooling design for blade trailing-edge and part of mid-chord region. In this design, pressure and suction side internal walls are subjected to oblique jet impingement. Three different configurations have been studied where we have systematically varied the jet diameters and number of jets in an array for different tiers. Numerical simulations have been carried out for different flow conditions, which corresponds to Reynolds numbers (based on 1st-passage jet diameter) ranging between 3000 and 46000. First two plenums had high levels of heat transfer due to oblique jet impingement, where the suction side internal wall representative surface, had higher heat transfer compared to the pressure side internal wall. Third tier had the lowest heat transfer due to triangle-like configuration where jets were almost parallel to pressure and suction side surfaces, and hence their effectiveness was lower than the oblique jet impingement in upstream two tiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信