G. Silva, Rafael Ferreira, R. Lins, L. Cabral, Hilário Oliveira, S. Simske, M. Riss
{"title":"基于机器学习的文本文档自动摘要","authors":"G. Silva, Rafael Ferreira, R. Lins, L. Cabral, Hilário Oliveira, S. Simske, M. Riss","doi":"10.1145/2682571.2797099","DOIUrl":null,"url":null,"abstract":"The need for automatic generation of summaries gained importance with the unprecedented volume of information available in the Internet. Automatic systems based on extractive summarization techniques select the most significant sentences of one or more texts to generate a summary. This article makes use of Machine Learning techniques to assess the quality of the twenty most referenced strategies used in extractive summarization, integrating them in a tool. Quantitative and qualitative aspects were considered in such assessment demonstrating the validity of the proposed scheme. The experiments were performed on the CNN-corpus, possibly the largest and most suitable test corpus today for benchmarking extractive summarization strategies.","PeriodicalId":106339,"journal":{"name":"Proceedings of the 2015 ACM Symposium on Document Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Automatic Text Document Summarization Based on Machine Learning\",\"authors\":\"G. Silva, Rafael Ferreira, R. Lins, L. Cabral, Hilário Oliveira, S. Simske, M. Riss\",\"doi\":\"10.1145/2682571.2797099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for automatic generation of summaries gained importance with the unprecedented volume of information available in the Internet. Automatic systems based on extractive summarization techniques select the most significant sentences of one or more texts to generate a summary. This article makes use of Machine Learning techniques to assess the quality of the twenty most referenced strategies used in extractive summarization, integrating them in a tool. Quantitative and qualitative aspects were considered in such assessment demonstrating the validity of the proposed scheme. The experiments were performed on the CNN-corpus, possibly the largest and most suitable test corpus today for benchmarking extractive summarization strategies.\",\"PeriodicalId\":106339,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Symposium on Document Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Symposium on Document Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2682571.2797099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2682571.2797099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Text Document Summarization Based on Machine Learning
The need for automatic generation of summaries gained importance with the unprecedented volume of information available in the Internet. Automatic systems based on extractive summarization techniques select the most significant sentences of one or more texts to generate a summary. This article makes use of Machine Learning techniques to assess the quality of the twenty most referenced strategies used in extractive summarization, integrating them in a tool. Quantitative and qualitative aspects were considered in such assessment demonstrating the validity of the proposed scheme. The experiments were performed on the CNN-corpus, possibly the largest and most suitable test corpus today for benchmarking extractive summarization strategies.