基于机器学习的文本文档自动摘要

G. Silva, Rafael Ferreira, R. Lins, L. Cabral, Hilário Oliveira, S. Simske, M. Riss
{"title":"基于机器学习的文本文档自动摘要","authors":"G. Silva, Rafael Ferreira, R. Lins, L. Cabral, Hilário Oliveira, S. Simske, M. Riss","doi":"10.1145/2682571.2797099","DOIUrl":null,"url":null,"abstract":"The need for automatic generation of summaries gained importance with the unprecedented volume of information available in the Internet. Automatic systems based on extractive summarization techniques select the most significant sentences of one or more texts to generate a summary. This article makes use of Machine Learning techniques to assess the quality of the twenty most referenced strategies used in extractive summarization, integrating them in a tool. Quantitative and qualitative aspects were considered in such assessment demonstrating the validity of the proposed scheme. The experiments were performed on the CNN-corpus, possibly the largest and most suitable test corpus today for benchmarking extractive summarization strategies.","PeriodicalId":106339,"journal":{"name":"Proceedings of the 2015 ACM Symposium on Document Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Automatic Text Document Summarization Based on Machine Learning\",\"authors\":\"G. Silva, Rafael Ferreira, R. Lins, L. Cabral, Hilário Oliveira, S. Simske, M. Riss\",\"doi\":\"10.1145/2682571.2797099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for automatic generation of summaries gained importance with the unprecedented volume of information available in the Internet. Automatic systems based on extractive summarization techniques select the most significant sentences of one or more texts to generate a summary. This article makes use of Machine Learning techniques to assess the quality of the twenty most referenced strategies used in extractive summarization, integrating them in a tool. Quantitative and qualitative aspects were considered in such assessment demonstrating the validity of the proposed scheme. The experiments were performed on the CNN-corpus, possibly the largest and most suitable test corpus today for benchmarking extractive summarization strategies.\",\"PeriodicalId\":106339,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Symposium on Document Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Symposium on Document Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2682571.2797099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2682571.2797099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

随着互联网上可获得的信息量空前庞大,自动生成摘要的需求变得越来越重要。基于提取摘要技术的自动系统选择一个或多个文本中最重要的句子来生成摘要。本文利用机器学习技术来评估提取摘要中使用的20种最常用策略的质量,并将它们集成到一个工具中。在这种评估中考虑了数量和质量方面,证明了拟议方案的有效性。实验是在cnn语料库上进行的,这可能是目前最大和最适合对抽取摘要策略进行基准测试的测试语料库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Text Document Summarization Based on Machine Learning
The need for automatic generation of summaries gained importance with the unprecedented volume of information available in the Internet. Automatic systems based on extractive summarization techniques select the most significant sentences of one or more texts to generate a summary. This article makes use of Machine Learning techniques to assess the quality of the twenty most referenced strategies used in extractive summarization, integrating them in a tool. Quantitative and qualitative aspects were considered in such assessment demonstrating the validity of the proposed scheme. The experiments were performed on the CNN-corpus, possibly the largest and most suitable test corpus today for benchmarking extractive summarization strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信