矩阵角中心高斯分布的识别

Muhammad Ali, M. Antolovich
{"title":"矩阵角中心高斯分布的识别","authors":"Muhammad Ali, M. Antolovich","doi":"10.1109/ISCMI.2016.39","DOIUrl":null,"url":null,"abstract":"We demonstrate the standard approach of Maximum Likelihood Estimation (MLE) for practicability of Grassmann Angular Central Gaussian (GACG) distribution by using Grassmann manifold. Our main concern is then on the applicability of GACG for computer vision application e.g., classification on arbitrarily high dimensional Grassmannian space. We show by numerical experiments that the implementation of the proposed Grassmannian variate parametric model via MLE using simple Bayesian classifier is directly related to the accurate calculation of normalising constant naturally appearing with them. We verify the validity and performance of our proposed approach on two publicly available databases against the existing state of art techniques, where we observed that the classification accuracy of our proposed approach outperforms significantly.","PeriodicalId":417057,"journal":{"name":"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition on Matrix Angular Central Gaussian Distribution\",\"authors\":\"Muhammad Ali, M. Antolovich\",\"doi\":\"10.1109/ISCMI.2016.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the standard approach of Maximum Likelihood Estimation (MLE) for practicability of Grassmann Angular Central Gaussian (GACG) distribution by using Grassmann manifold. Our main concern is then on the applicability of GACG for computer vision application e.g., classification on arbitrarily high dimensional Grassmannian space. We show by numerical experiments that the implementation of the proposed Grassmannian variate parametric model via MLE using simple Bayesian classifier is directly related to the accurate calculation of normalising constant naturally appearing with them. We verify the validity and performance of our proposed approach on two publicly available databases against the existing state of art techniques, where we observed that the classification accuracy of our proposed approach outperforms significantly.\",\"PeriodicalId\":417057,\"journal\":{\"name\":\"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCMI.2016.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI.2016.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用格拉斯曼流形证明了极大似然估计(MLE)的标准方法对格拉斯曼角中心高斯分布的实用性。我们主要关注的是GACG在计算机视觉应用中的适用性,例如在任意高维格拉斯曼空间上的分类。数值实验表明,利用简单贝叶斯分类器通过MLE实现所提出的格拉斯曼变量参数模型与自然出现的归一化常数的精确计算直接相关。我们在两个公开可用的数据库上验证了我们提出的方法的有效性和性能,对比现有的最先进的技术,我们观察到我们提出的方法的分类精度显着优于我们提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition on Matrix Angular Central Gaussian Distribution
We demonstrate the standard approach of Maximum Likelihood Estimation (MLE) for practicability of Grassmann Angular Central Gaussian (GACG) distribution by using Grassmann manifold. Our main concern is then on the applicability of GACG for computer vision application e.g., classification on arbitrarily high dimensional Grassmannian space. We show by numerical experiments that the implementation of the proposed Grassmannian variate parametric model via MLE using simple Bayesian classifier is directly related to the accurate calculation of normalising constant naturally appearing with them. We verify the validity and performance of our proposed approach on two publicly available databases against the existing state of art techniques, where we observed that the classification accuracy of our proposed approach outperforms significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信