加性可分离函数的多模态与链接学习困难

J. P. Martins, A. Delbem
{"title":"加性可分离函数的多模态与链接学习困难","authors":"J. P. Martins, A. Delbem","doi":"10.1145/2576768.2598281","DOIUrl":null,"url":null,"abstract":"Estimation of Distribution Algorithms (EDAs) have emerged from the synergy between machine-learning techniques and Genetic Algorithms (GAs). EDAs rely on probabilistic modeling for obtaining information about the underlying structure of optimization problems and implementing effective reproduction operators. The effectiveness of EDAs depends on the capacity of the model-building to extract reliable information about the problem. In this study we analyze additively separable functions and argue that the degree of multimodality of such functions defines their linkage-learning difficulty. Besides, by using entropy-based concepts and Jensen's inequality, we show how allelic pairwise independence may appear as a consequence of an increasing multimodality. The results characterize the linkage-learning difficulty of well-known functions, like the deceptive trap, bipolar and concatenated parity.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multimodality and the linkage-learning difficulty of additively separable functions\",\"authors\":\"J. P. Martins, A. Delbem\",\"doi\":\"10.1145/2576768.2598281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of Distribution Algorithms (EDAs) have emerged from the synergy between machine-learning techniques and Genetic Algorithms (GAs). EDAs rely on probabilistic modeling for obtaining information about the underlying structure of optimization problems and implementing effective reproduction operators. The effectiveness of EDAs depends on the capacity of the model-building to extract reliable information about the problem. In this study we analyze additively separable functions and argue that the degree of multimodality of such functions defines their linkage-learning difficulty. Besides, by using entropy-based concepts and Jensen's inequality, we show how allelic pairwise independence may appear as a consequence of an increasing multimodality. The results characterize the linkage-learning difficulty of well-known functions, like the deceptive trap, bipolar and concatenated parity.\",\"PeriodicalId\":123241,\"journal\":{\"name\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2576768.2598281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

分布估计算法(EDAs)是从机器学习技术和遗传算法(GAs)之间的协同作用中产生的。eda依赖于概率建模来获取优化问题的底层结构信息并实现有效的复制算子。eda的有效性取决于模型构建提取有关问题的可靠信息的能力。本文分析了加性可分离函数,并认为这些函数的多模态程度决定了它们的连接学习难度。此外,通过使用基于熵的概念和Jensen不等式,我们展示了等位基因成对独立如何作为增加多模态的结果而出现。结果表征了众所周知的函数的链接学习困难,如欺骗性陷阱,双极和连接奇偶校验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodality and the linkage-learning difficulty of additively separable functions
Estimation of Distribution Algorithms (EDAs) have emerged from the synergy between machine-learning techniques and Genetic Algorithms (GAs). EDAs rely on probabilistic modeling for obtaining information about the underlying structure of optimization problems and implementing effective reproduction operators. The effectiveness of EDAs depends on the capacity of the model-building to extract reliable information about the problem. In this study we analyze additively separable functions and argue that the degree of multimodality of such functions defines their linkage-learning difficulty. Besides, by using entropy-based concepts and Jensen's inequality, we show how allelic pairwise independence may appear as a consequence of an increasing multimodality. The results characterize the linkage-learning difficulty of well-known functions, like the deceptive trap, bipolar and concatenated parity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信