生成学习者群体动态的预测模型

Chris Teplovs, Nobuko Fujita, Ravikiran Vatrapu
{"title":"生成学习者群体动态的预测模型","authors":"Chris Teplovs, Nobuko Fujita, Ravikiran Vatrapu","doi":"10.1145/2090116.2090139","DOIUrl":null,"url":null,"abstract":"In this paper we present a framework for learner modelling that combines latent semantic analysis and social network analysis of online discourse. The framework is supported by newly developed software, known as the Knowledge, Interaction, and Social Student Modelling Explorer (KISSME), that employs highly interactive visualizations of content-aware interactions among learners. Our goal is to develop, use and refine KISSME to generate and test predictive models of learner interactions to optimise learning.","PeriodicalId":150927,"journal":{"name":"Proceedings of the 1st International Conference on Learning Analytics and Knowledge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Generating predictive models of learner community dynamics\",\"authors\":\"Chris Teplovs, Nobuko Fujita, Ravikiran Vatrapu\",\"doi\":\"10.1145/2090116.2090139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a framework for learner modelling that combines latent semantic analysis and social network analysis of online discourse. The framework is supported by newly developed software, known as the Knowledge, Interaction, and Social Student Modelling Explorer (KISSME), that employs highly interactive visualizations of content-aware interactions among learners. Our goal is to develop, use and refine KISSME to generate and test predictive models of learner interactions to optimise learning.\",\"PeriodicalId\":150927,\"journal\":{\"name\":\"Proceedings of the 1st International Conference on Learning Analytics and Knowledge\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Conference on Learning Analytics and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2090116.2090139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2090116.2090139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们提出了一个学习者建模框架,该框架结合了在线话语的潜在语义分析和社会网络分析。该框架由新开发的软件支持,称为知识、交互和社会学生建模探索者(KISSME),该软件采用学习者之间内容感知交互的高度交互式可视化。我们的目标是开发、使用和完善KISSME,以生成和测试学习者交互的预测模型,以优化学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating predictive models of learner community dynamics
In this paper we present a framework for learner modelling that combines latent semantic analysis and social network analysis of online discourse. The framework is supported by newly developed software, known as the Knowledge, Interaction, and Social Student Modelling Explorer (KISSME), that employs highly interactive visualizations of content-aware interactions among learners. Our goal is to develop, use and refine KISSME to generate and test predictive models of learner interactions to optimise learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信