加权Lebesgue空间中内外零角Lavrentiev区域的多项式不等式

F. Abdullayev, N. P. Ozkartepe
{"title":"加权Lebesgue空间中内外零角Lavrentiev区域的多项式不等式","authors":"F. Abdullayev, N. P. Ozkartepe","doi":"10.2298/PIM1614209A","DOIUrl":null,"url":null,"abstract":"Let C be a complex plane, C̄ := C∪ {∞}; G ⊂ C be a bounded Jordan region, with 0 ∈ G and the boundary L := ∂G be a simple closed rectifiable Jordan curve, Ω := C̄ r Ḡ = extL; ∆ := {w : |w| > 1}. Let w = Φ(z) be the univalent conformal mapping of Ω onto the ∆ normalized by Φ(∞) = ∞, limz→∞ Φ(z) z > 0. For t > 1, let us set Lt := {z : |Φ(z)| = t}, L1 ≡ L, Gt := intLt, Ωt := extLt. For z ∈ C and S ⊂ C let d(z, S) := dist(z, S) = inf{|ζ− z| : ζ ∈ S}. Let h(z) be a weight function defined in GR0 for some fixed R0 > 1 and let ℘n denote the class of arbitrary algebraic polynomials Pn(z) of degree at most n ∈ N := {1, 2, . . .}. For any p > 0 we denote","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Polynomial inequalities in Lavrentiev regions with interior and exterior zero angles in the weighted Lebesgue space\",\"authors\":\"F. Abdullayev, N. P. Ozkartepe\",\"doi\":\"10.2298/PIM1614209A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let C be a complex plane, C̄ := C∪ {∞}; G ⊂ C be a bounded Jordan region, with 0 ∈ G and the boundary L := ∂G be a simple closed rectifiable Jordan curve, Ω := C̄ r Ḡ = extL; ∆ := {w : |w| > 1}. Let w = Φ(z) be the univalent conformal mapping of Ω onto the ∆ normalized by Φ(∞) = ∞, limz→∞ Φ(z) z > 0. For t > 1, let us set Lt := {z : |Φ(z)| = t}, L1 ≡ L, Gt := intLt, Ωt := extLt. For z ∈ C and S ⊂ C let d(z, S) := dist(z, S) = inf{|ζ− z| : ζ ∈ S}. Let h(z) be a weight function defined in GR0 for some fixed R0 > 1 and let ℘n denote the class of arbitrary algebraic polynomials Pn(z) of degree at most n ∈ N := {1, 2, . . .}. For any p > 0 we denote\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1614209A\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1614209A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

设C为复平面,C´:= C∪{∞};G∧C为有界约旦区域,其中0∈G,边界L:=∂G为简单闭可整流约旦曲线,Ω:= C´r Ḡ = extL;∆:= {w: |w| > 1}。设w = Φ(z)是Ω到Φ(∞)=∞,limz→∞Φ(z) z > 0归一化的一元保角映射。对于t > 1,设Lt:= {z: |Φ(z)| = t}, L1≡L, Gt:= intLt, Ωt:= extLt。z∈C和S⊂C让d (z,年代):= dist (z, S) = inf{|ζ−z |:ζ∈年代}。设h(z)是在GR0中定义的对于某个固定R0 > 1的权函数,设p (p)表示次数最多为n∈n的任意代数多项式Pn(z):={1,2,…}。对于任意p > 0,我们表示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial inequalities in Lavrentiev regions with interior and exterior zero angles in the weighted Lebesgue space
Let C be a complex plane, C̄ := C∪ {∞}; G ⊂ C be a bounded Jordan region, with 0 ∈ G and the boundary L := ∂G be a simple closed rectifiable Jordan curve, Ω := C̄ r Ḡ = extL; ∆ := {w : |w| > 1}. Let w = Φ(z) be the univalent conformal mapping of Ω onto the ∆ normalized by Φ(∞) = ∞, limz→∞ Φ(z) z > 0. For t > 1, let us set Lt := {z : |Φ(z)| = t}, L1 ≡ L, Gt := intLt, Ωt := extLt. For z ∈ C and S ⊂ C let d(z, S) := dist(z, S) = inf{|ζ− z| : ζ ∈ S}. Let h(z) be a weight function defined in GR0 for some fixed R0 > 1 and let ℘n denote the class of arbitrary algebraic polynomials Pn(z) of degree at most n ∈ N := {1, 2, . . .}. For any p > 0 we denote
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信