阿波罗:

N. Rajesh, H. Devarajan, Jaime Cernuda Garcia, Keith Bateman, Luke Logan, Jie Ye, Anthony Kougkas, Xian-He Sun
{"title":"阿波罗:","authors":"N. Rajesh, H. Devarajan, Jaime Cernuda Garcia, Keith Bateman, Luke Logan, Jie Ye, Anthony Kougkas, Xian-He Sun","doi":"10.1145/3431379.3460640","DOIUrl":null,"url":null,"abstract":"Applications and middleware services, such as data placement engines, I/O scheduling, and prefetching engines, require low-latency access to telemetry data in order to make optimal decisions. However, typical monitoring services store their telemetry data in a database in order to allow applications to query them, resulting in significant latency penalties. This work presents Apollo: a low-latency monitoring service that aims to provide applications and middleware libraries with direct access to relational telemetry data. Monitoring the system can create interference and overhead, slowing down raw performance of the resources for the job. However, having a current view of the system can aid middleware services in making more optimal decisions which can ultimately improve the overall performance. Apollo has been designed from the ground up to provide low latency, using Publish-Subscriber Pub-Sub semantics, and low overhead, using adaptive intervals in order to change the length of time between polling the resource for telemetry data and machine learning in order to predict changes to the telemetry data between actual resource polling. This work also provides some high level abstractions called I/O curators, which can further aid middleware libraries and applications to make optimal decisions. Evaluations showcase that Apollo can achieve sub-millisecond latency for acquiring complex insights with a memory overhead of ~57 MB and CPU overhead being only 7% more than existing state-of-the-art systems.","PeriodicalId":343991,"journal":{"name":"Proceedings of the 30th International Symposium on High-Performance Parallel and Distributed Computing","volume":"9 Suppl 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Apollo:\",\"authors\":\"N. Rajesh, H. Devarajan, Jaime Cernuda Garcia, Keith Bateman, Luke Logan, Jie Ye, Anthony Kougkas, Xian-He Sun\",\"doi\":\"10.1145/3431379.3460640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications and middleware services, such as data placement engines, I/O scheduling, and prefetching engines, require low-latency access to telemetry data in order to make optimal decisions. However, typical monitoring services store their telemetry data in a database in order to allow applications to query them, resulting in significant latency penalties. This work presents Apollo: a low-latency monitoring service that aims to provide applications and middleware libraries with direct access to relational telemetry data. Monitoring the system can create interference and overhead, slowing down raw performance of the resources for the job. However, having a current view of the system can aid middleware services in making more optimal decisions which can ultimately improve the overall performance. Apollo has been designed from the ground up to provide low latency, using Publish-Subscriber Pub-Sub semantics, and low overhead, using adaptive intervals in order to change the length of time between polling the resource for telemetry data and machine learning in order to predict changes to the telemetry data between actual resource polling. This work also provides some high level abstractions called I/O curators, which can further aid middleware libraries and applications to make optimal decisions. Evaluations showcase that Apollo can achieve sub-millisecond latency for acquiring complex insights with a memory overhead of ~57 MB and CPU overhead being only 7% more than existing state-of-the-art systems.\",\"PeriodicalId\":343991,\"journal\":{\"name\":\"Proceedings of the 30th International Symposium on High-Performance Parallel and Distributed Computing\",\"volume\":\"9 Suppl 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th International Symposium on High-Performance Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3431379.3460640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3431379.3460640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Apollo:
Applications and middleware services, such as data placement engines, I/O scheduling, and prefetching engines, require low-latency access to telemetry data in order to make optimal decisions. However, typical monitoring services store their telemetry data in a database in order to allow applications to query them, resulting in significant latency penalties. This work presents Apollo: a low-latency monitoring service that aims to provide applications and middleware libraries with direct access to relational telemetry data. Monitoring the system can create interference and overhead, slowing down raw performance of the resources for the job. However, having a current view of the system can aid middleware services in making more optimal decisions which can ultimately improve the overall performance. Apollo has been designed from the ground up to provide low latency, using Publish-Subscriber Pub-Sub semantics, and low overhead, using adaptive intervals in order to change the length of time between polling the resource for telemetry data and machine learning in order to predict changes to the telemetry data between actual resource polling. This work also provides some high level abstractions called I/O curators, which can further aid middleware libraries and applications to make optimal decisions. Evaluations showcase that Apollo can achieve sub-millisecond latency for acquiring complex insights with a memory overhead of ~57 MB and CPU overhead being only 7% more than existing state-of-the-art systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信