基于车-路-云协同的车在环智能网联仿真系统

Shuguang Li, Zhonglin Luo, Wenbo Wei, Yang Zhao, Jierui Hu, Hong Cheng
{"title":"基于车-路-云协同的车在环智能网联仿真系统","authors":"Shuguang Li, Zhonglin Luo, Wenbo Wei, Yang Zhao, Jierui Hu, Hong Cheng","doi":"10.1109/ITSC55140.2022.9922190","DOIUrl":null,"url":null,"abstract":"Autonomous driving test technology is an important guarantee for the large-scale commercialization of autonomous vehicles(AV). The existing test methods are mainly based roads and simulations. Traditional vehicle road test has real traffic environment, but the diversity of test scenarios is limited. It is difficult to customize corner case scenarios safely and efficiently. Simulation testing is flexible and efficient, but the lack of a real traffic flow test environment separates the strong coupling relationship between the vehicle and the environment in practical application scenarios. In view of above, a novel Vehicle-in-the- Loop(ViL) verification method based on vehicle-road-cloud collaboration is proposed in this paper. (1) On the roadside, we propose a road real-time traffic flow element perception method based on monocular camera, and apply the real traffic flow to autonomous driving simulation testing. (2) On cloud platform, we independently develop a simulation platform based on Open- SceneGraph(OSG), which can quickly simulate different weather, lighting and other disturbance factors such as virtual pedestrians and vehicles based on real scenes. (3) On the vehicle, we build a closed-loop test system that combine intelligent connected vehicle(ICV) and mixed environments. This paper takes the autonomous driving obstacle avoidance algorithm in the campus road scene as an example, and completes the system test in the mixed scene. Experiments show that our proposed method can be used as a safer and more efficient test method before autonomous vehicle road test.","PeriodicalId":184458,"journal":{"name":"International Conference on Intelligent Transportation Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle-in-the-Loop Intelligent Connected Vehicle Simulation System Based on Vehicle-Road-Cloud Collaboration\",\"authors\":\"Shuguang Li, Zhonglin Luo, Wenbo Wei, Yang Zhao, Jierui Hu, Hong Cheng\",\"doi\":\"10.1109/ITSC55140.2022.9922190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous driving test technology is an important guarantee for the large-scale commercialization of autonomous vehicles(AV). The existing test methods are mainly based roads and simulations. Traditional vehicle road test has real traffic environment, but the diversity of test scenarios is limited. It is difficult to customize corner case scenarios safely and efficiently. Simulation testing is flexible and efficient, but the lack of a real traffic flow test environment separates the strong coupling relationship between the vehicle and the environment in practical application scenarios. In view of above, a novel Vehicle-in-the- Loop(ViL) verification method based on vehicle-road-cloud collaboration is proposed in this paper. (1) On the roadside, we propose a road real-time traffic flow element perception method based on monocular camera, and apply the real traffic flow to autonomous driving simulation testing. (2) On cloud platform, we independently develop a simulation platform based on Open- SceneGraph(OSG), which can quickly simulate different weather, lighting and other disturbance factors such as virtual pedestrians and vehicles based on real scenes. (3) On the vehicle, we build a closed-loop test system that combine intelligent connected vehicle(ICV) and mixed environments. This paper takes the autonomous driving obstacle avoidance algorithm in the campus road scene as an example, and completes the system test in the mixed scene. Experiments show that our proposed method can be used as a safer and more efficient test method before autonomous vehicle road test.\",\"PeriodicalId\":184458,\"journal\":{\"name\":\"International Conference on Intelligent Transportation Systems\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC55140.2022.9922190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC55140.2022.9922190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle-in-the-Loop Intelligent Connected Vehicle Simulation System Based on Vehicle-Road-Cloud Collaboration
Autonomous driving test technology is an important guarantee for the large-scale commercialization of autonomous vehicles(AV). The existing test methods are mainly based roads and simulations. Traditional vehicle road test has real traffic environment, but the diversity of test scenarios is limited. It is difficult to customize corner case scenarios safely and efficiently. Simulation testing is flexible and efficient, but the lack of a real traffic flow test environment separates the strong coupling relationship between the vehicle and the environment in practical application scenarios. In view of above, a novel Vehicle-in-the- Loop(ViL) verification method based on vehicle-road-cloud collaboration is proposed in this paper. (1) On the roadside, we propose a road real-time traffic flow element perception method based on monocular camera, and apply the real traffic flow to autonomous driving simulation testing. (2) On cloud platform, we independently develop a simulation platform based on Open- SceneGraph(OSG), which can quickly simulate different weather, lighting and other disturbance factors such as virtual pedestrians and vehicles based on real scenes. (3) On the vehicle, we build a closed-loop test system that combine intelligent connected vehicle(ICV) and mixed environments. This paper takes the autonomous driving obstacle avoidance algorithm in the campus road scene as an example, and completes the system test in the mixed scene. Experiments show that our proposed method can be used as a safer and more efficient test method before autonomous vehicle road test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信