{"title":"基于异构社会网络信息和时间信息的事件推荐","authors":"Xiaofan Zhao, Wenming Ma","doi":"10.1145/3573834.3574514","DOIUrl":null,"url":null,"abstract":"In recent years, event-based social networks have developed rapidly, and event recommendation has attracted more and more attention. At present, for event recommendation, it is centered on the event, and aims to help users get the events which they are interested in from a large number of events. However, compared with traditional recommendation problems, event recommendation has many challenges. First of all, there is no obvious explicit rating of users’ response to events, but implicit feedback. Secondly, the recommendation of events has heterogeneous social network relations. At the same time, most users participate in few events, which leads to a very serious data sparsity problem. In order to address these challenges and improve the effectiveness of event recommendation, this paper proposes an event recommendation model that integrates users’ online and offline heterogeneous social network information and time information. The model uses Bayesian personalized ranking as the framework to process the implicit feedback information of users and events, and simultaneously combines online and offline social network information and time information to model together to improve the accuracy of recommendation. Experimental results based on real data sets show that the performance of the proposed model is better than other methods.","PeriodicalId":345434,"journal":{"name":"Proceedings of the 4th International Conference on Advanced Information Science and System","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event Recommendation Based on Heterogeneous Social Network Information and Time Information\",\"authors\":\"Xiaofan Zhao, Wenming Ma\",\"doi\":\"10.1145/3573834.3574514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, event-based social networks have developed rapidly, and event recommendation has attracted more and more attention. At present, for event recommendation, it is centered on the event, and aims to help users get the events which they are interested in from a large number of events. However, compared with traditional recommendation problems, event recommendation has many challenges. First of all, there is no obvious explicit rating of users’ response to events, but implicit feedback. Secondly, the recommendation of events has heterogeneous social network relations. At the same time, most users participate in few events, which leads to a very serious data sparsity problem. In order to address these challenges and improve the effectiveness of event recommendation, this paper proposes an event recommendation model that integrates users’ online and offline heterogeneous social network information and time information. The model uses Bayesian personalized ranking as the framework to process the implicit feedback information of users and events, and simultaneously combines online and offline social network information and time information to model together to improve the accuracy of recommendation. Experimental results based on real data sets show that the performance of the proposed model is better than other methods.\",\"PeriodicalId\":345434,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Advanced Information Science and System\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Advanced Information Science and System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573834.3574514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Advanced Information Science and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573834.3574514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Event Recommendation Based on Heterogeneous Social Network Information and Time Information
In recent years, event-based social networks have developed rapidly, and event recommendation has attracted more and more attention. At present, for event recommendation, it is centered on the event, and aims to help users get the events which they are interested in from a large number of events. However, compared with traditional recommendation problems, event recommendation has many challenges. First of all, there is no obvious explicit rating of users’ response to events, but implicit feedback. Secondly, the recommendation of events has heterogeneous social network relations. At the same time, most users participate in few events, which leads to a very serious data sparsity problem. In order to address these challenges and improve the effectiveness of event recommendation, this paper proposes an event recommendation model that integrates users’ online and offline heterogeneous social network information and time information. The model uses Bayesian personalized ranking as the framework to process the implicit feedback information of users and events, and simultaneously combines online and offline social network information and time information to model together to improve the accuracy of recommendation. Experimental results based on real data sets show that the performance of the proposed model is better than other methods.